Abstract: Patient blood management (PBM) is defined as the timely application of evidence-based medical and surgical concepts designed to maintain a surgical patient's hemoglobin concentration, optimize hemostasis, and minimize blood loss in an effort to improve the outcomes. PBM is able to reduce mortality up to 68%, reoperation up to 43%, readmission up to 43%, composite morbidity up to 41%, infection rate up to 80%, average length of stay by 16%–33%, transfusion from 10% to 95%, and costs from 10% to 84% after major surgery. It should be noticed, however, that the process of PBM implementation is still in its infancy, and that its potential to improve perioperative outcomes could be strictly linked to the degree of adherence/compliance to the whole program, with decoupling and noncompliance being significant factors for failure. Therefore, the steering committees of four major Italian scientific societies, representing general surgeons, anesthesiologists and transfusion medicine specialists (Associazione Chirurghi Ospedalieri Italiani; Società Italiana di Anestesia, Analgesia, Rianimazione e Terapia Intensiva; Società Italiana di Emaferesi e Manipolazione Cellulare; Società Italiana di Medicina Trasfusionale e Immunocompatibilità), organized a joint modified Delphi consensus conference on PBM in the field of major digestive surgery (upper and lower gastrointestinal tract, and hepato-biliary-pancreatic resections), whose results and recommendations are herein presented.

Keywords: Patient blood management; Perioperative anemia; Iron deficiency anemia; Major digestive surgery

Introduction

In recent years, various strategies have been studied to reduce the perioperative use of blood transfusions to prevent transfusion-related adverse events, increase patient safety, and reduce costs. As a consequence, a new concept was born: patient blood management (PBM). According to the World Health Organization (WHO), PBM is defined as the timely application of evidence-based medical and surgical concepts designed to maintain a patient’s hemoglobin (Hb) concentration, optimize hemostasis, and minimize blood loss in an effort to improve outcomes.1 More in detail, PBM focuses on three pillars: (1) optimizing red cell mass; (2) minimizing perioperative blood loss and bleeding; and (3) optimizing tolerance of anemia. The implementation of the three pillars of PBM leads to improved patient outcomes by relying on his/her own blood rather than on that of a donor. PBM goes beyond the concept of appropriate use of blood products, because it precedes and strongly reduces the use of blood transfusions by correcting modifiable risk factors long before a transfusion may even be considered. Importantly, the PBM is transversal to diseases, procedures, and
The three pillars of PBM (Adapted from Farmer et al).

<table>
<thead>
<tr>
<th>Period</th>
<th>1st pillar</th>
<th>2nd pillar</th>
<th>3rd pillar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative</td>
<td>• Detect anemia</td>
<td>• Identify and manage bleeding risk</td>
<td>• Assess/optimize patient’s physiological reserve and risk factors</td>
</tr>
<tr>
<td></td>
<td>• Identify and manage underlying disorder(s)</td>
<td>• Minimize iatrogenic blood loss</td>
<td>• Compare estimated blood loss with patient-specific tolerable blood loss</td>
</tr>
<tr>
<td></td>
<td>• Refer for further evaluation if necessary</td>
<td>• Procedure planning and rehearsal</td>
<td>• Formulate patient-specific management plan using appropriate blood conservation modalities to minimize blood loss, optimize red cell mass and manage anemia</td>
</tr>
<tr>
<td></td>
<td>• Treat subcutaneous iron stores, ID, anemia of chronic disease, iron-restricted erythropoiesis</td>
<td></td>
<td>• Optimize cardiac output</td>
</tr>
<tr>
<td></td>
<td>• Treat other hematologic deficiencies</td>
<td></td>
<td>• Optimize ventilation and oxygenation</td>
</tr>
<tr>
<td>Intraoperative</td>
<td>• Time surgery with hematological optimization</td>
<td>• Meticulous hemostasis and surgical techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Blood-sparing surgical devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Anesthetic blood-conserving strategies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Autologous blood options</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Maintain normothermia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pharmacological/hemostatic agents</td>
<td></td>
</tr>
<tr>
<td>Postoperative</td>
<td>• Optimize erythropoiesis</td>
<td>• Vigilant monitoring and management of postoperative bleeding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Be aware of drug interactions that can increase anemia</td>
<td>• Avoid secondary hemorrhage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Rapid warming, maintain normothermia (unless hypothermia specifically indicated)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Autologous blood salvage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Minimize iatrogenic blood loss</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hemostasis/anticoagulation management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Prophylaxis of upper GI hemorrhage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Avoid/treat infections promptly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Be aware of adverse effects of medication</td>
<td></td>
</tr>
</tbody>
</table>

D indicates iron deficiency.

Disciplines. It is solely aimed at managing a patient’s resource (e.g., his/her blood), shifting the attention from the blood component to the patient himself/herself. Pragmatically, the PBM consists of different approaches according to the considered pillar and to the time with respect to surgery (Table 1).

According to different studies, PBM is able to reduce mortality up to 68%, reoperation up to 43%, readmission up to 43%, composite morbidity up to 41%, infection rate up to 80%, average length of stay by 16%–33%, transfusion from 10% to 95%, and costs from 10% to 84% after major surgery. Besides these favorable results, others argue that PBM does not improve any outcome outside a significant reduction of perioperative blood transfusions, therefore not being cost-effective. It should be noticed, however, that the process of PBM implementation is still in its infancy, and that its potential to improve perioperative outcomes could be strictly linked to the degree of adherence/compliance to the whole program, with decoupling and noncompliance being significant factors for failure. Actually, longer implementation experience with a similar multifactorial, multidisciplinary, and evidence-based bundle of perioperative care, such as the enhanced recovery after surgery (ERAS) pathway, clearly showed that the bundle acts as a whole, with higher (e.g., beyond 70%–80%) adherence rates to the program items being significantly related to better outcomes in a close dose-effect relationship. For these reasons, the steering committees of four major Italian scientific societies, representing general surgeons, anesthesiologists, and transfusion medicine specialists (Associazione Chirurghi Ospedalieri Italiani [ACOI]; Società Italiana di Anestesia, Analgesia, Rianimazione e Terapia Intensiva [SIAARTI]; Società Italiana di Ematologia e Manipolazione Cellulare; and Società Italiana di Medicina Trasfusionale e Immunonematologia [SIMITI]), organized a joint consensus conference on PBM in the field of major digestive surgery (upper gastrointestinal tract, lower gastrointestinal tract, and hepato-biliarypancreatic resections).
Methods

This initiative was developed on a four-step modified Delphi method\(^\text{10}\) (Figure 1). During the first step, a restricted group of panelists (the first five authors) developed a 23-item questionnaire on PBM in major digestive surgery (Table 2), based on the existing national recommendations for surgery, orthopedic surgery, and a previous survey by the Italian national blood center (Centro Nazionale Sangue, CNS).\(^\text{11-13}\) During the second step, this questionnaire was posted on the website of the participating scientific societies, obtaining 374 voluntary answers during a 1-month period (surgeons 58.2%, anesthesiologists 11.5%, and transfusion medicine specialists 30.3%). Items receiving >70% agreement were excluded from further analysis. During the third step, specific multidisciplinary study groups were designated by the presidents of the participating scientific societies, formulated as patient intervention comparators outcomes (PICO) questions regarding the remaining 10 items, with the aim to perform a systematic literature review and critical appraisal on each item. Each multidisciplinary group involved at least one member of all participating scientific societies. Systematic searches of the PubMed, Embase, Web of Science, Cochrane Library, WHO International Clinical Trials Registry Platform, and ClinicalTrials.gov databases were performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement,\(^\text{14}\) using the keywords relevant to each section, either mapped to Medline Subjects Headings terms, or searched for as text items, retrieving titles and abstracts in the English language from 1 January 2000 to 31 May 2023. All the details of the systematic literature searches are presented as eSupplementary Material; http://links.lww.com/IA9/A6. Further studies were identified from Google Scholar and manual searches through reference lists of the relevant studies found. Any article selected to support the recommendations was assessed using the American Medical Association guidelines,\(^\text{15}\) grading the evidence according to the Grading of Recommendations Assessment, Development and Evaluation system.\(^\text{16}\) During the fourth step, each working group presented several statements in a consensus conference during the ACOI national congress held in Rome, 11th September 2023. Each single statement was discussed and voted by 44 panelists (ACOI 43.2%; SIAARTI 13.6%; Società Italiana di Ematologia e Manipolazione Cellulare 9.1%; and SIMTI 34.1%), receiving mean ± SD 32.2 ± 3.6 votes (median 31; range 28–44). Thereafter, the level of evidence (LoE), grade of recommendation (GoR), and consensus (%) received were approved by the presidents of the four scientific societies.

Results

Patient blood management implementation strategy

The first five questions of the initial survey were joined in one PICO question defined as “PBM implementation strategy.” Actually, in 2010, the WHO adopted a resolution binding on all member countries (Resolution WHA 63.12 of 21st May 2010), which contains recommendations on the safety and availability of blood products and a section on PBM. More than 10 years later, the WHO reaffirmed the need to apply PBM strategies even in the midst of the pandemic era, in relation to demographic evidence and sociological changes and the prevalence of chronic comorbidities.\(^\text{1}\) In these recommendations the importance of interdisciplinary perioperative evaluation is emphasized to optimize the patient’s blood volume, minimize blood loss, and implement his/her physiological anemia tolerance.\(^\text{17-19}\) Italy is the first country in which PBM was officially supported at the Ministerial level: in 2012 the CNS, in line with the WHO Resolution, promoted PBM, and, in 2013, activated a joint initiative with five Scientific Societies (SIMTI, SIAARTI, Associazione Nazionale dei Medici delle Direzioni Ospedaliere, Società Italiana per lo Studio dell’Emostasi e della Trombosi, and Società Italiana di Ortopedia e Traumatologia), starting a national project aimed at promoting the first pilot applications of PBM in elective major orthopedic surgery in adults. The project was defined with the establishment of a multidisciplinary

Figure 1. Study flowchart.
Is there a shared protocol of transfusion thresholds? 260 (69.5%)

Is there a shared protocol for postoperative anemia management? 212 (56.7%)

Implemented strategy for the reduction of intraoperative blood loss 276 (73.8%)

Implemented strategy for the reduction of iatrogenic blood loss 103 (27.5%)

On 2nd November 2015, the Italian Minister of Health recommended Preoperative anemia, which is correlated with increased mortality, morbidity, and length of hospitalization.27–32 It is important to include a patient brochure describing the entire PBM pathway, the significance of care and the significance of the pathway.33–35 and a patient’s satisfaction questionnaire defined with a scoring system for the identification of critical points of the pathway.33–35

The strategic management units involved may define an interdisciplinary group, representative of the hospital’s specific operations, which may identify an expert coordinator, on the basis of the professional profile and specific experience, who will define a time schedule of the planned activities.36 This interdisciplinary group must provide a permanent training system to verify adherence to the pathway and to develop continuous hospital training for operators to maintain the desired standards of effectiveness and efficiency.37

Statement #1: The strategy for PBM implementation should include the design of a DTCP, that should be representative of the considered hospital reality and must outline a flow chart with all the nodal points of the program. A dedicated outpatient anemia clinic for the multidisciplinary diagnosis and correction of preoperative anemia in elective surgical patients is a fundamental point of the pathway. An illustrative brochure describing the entire PBM pathway and its significance should be provided to the patient. A patient’s satisfaction questionnaire with defined scoring system should be used for the identification of the critical points of the pathway. A multidisciplinary and a permanent training system should be created for audit and improvement of the pathway. LoE 2 a; GoR A; Consensus 97.4%.

Preoperative anemia screening and diagnosis

The prevalence of preoperative anemia in patients undergoing noncardiac surgery is high (28%–30%).38 Approaching nearly half of patients in certain subspecialties such as in colorectal surgery (40.4%–47.4%), orthopedic surgery (25%–41%), and urology (8%–45%).39 The presence of preoperative anemia, even if mild, has been associated with an increased risk of red blood...
cells (RBCs) transfusion and increased morbidity and mortality rates after surgery. In addition, RBCs transfusion has been consistently associated with worsened clinical outcomes.\(^{40,41}\) Timely identification and appropriate management of anemia in the surgical population is therefore necessary to optimize patient outcomes.\(^{42-46}\) The approach to the diagnosis and management of anemia in surgery has been evolving as more data have become available, both on pathophysiology and on how the underlying mechanism should influence therapy.\(^{47,48}\) The most commonly used criteria for defining anemia are the WHO definitions (Hb <120 g/l for women and <130 g/l for men). However, it has been suggested that these should be updated.\(^{49}\) In a review by Muñoz et al,\(^{49}\) Hb <130 g/l for both men and women was suggested for the definition of preoperative anemia, whereas the WHO criteria were considered acceptable for postoperative anemia. Adoption of the 130 g/dl threshold in both sexes has also been suggested in recent reviews on perioperative anemia and PBM.\(^{50-52}\) The etiology of preoperative anemia can be multifactorial, but almost two-thirds of anemic elective surgical patients have iron deficiency anemia (IDA). At the same time, as many as one-third of nonanemic elective surgical patients are also iron deficient.\(^{53-56}\)

Anemia may be caused by chronic inflammatory conditions, kidney disease, malnutrition, ongoing small-volume blood loss, and iron deficiency (ID). IDA is widely accepted to be the most common cause, and, in a recent study of 3342 patients undergoing gynecologic, urologic, colorectal, cardiac, or orthopedic surgery, almost two-thirds (62%) of patients with preoperative anemia had some component of IDA.\(^{57}\) In patients with cancer, chronic bleeding from gastrointestinal tumors can also contribute to preoperative anemia. Given the increased incidence of most surgical conditions with increasing age, the mean age of surgical patients is older than that of other cohorts and is associated with an increased prevalence of anemia. Unlike in the general population, the cause of anemia in older patients is multifactorial in almost two-thirds of cases.\(^{45}\) The first algorithm for the evaluation and treatment of preoperative anemia in elective orthopedic surgery was present at the Network for the Advancement of Patient Blood Management, Haemostasis and Thrombosis annual symposium in 2011,\(^{58}\) further updated in 2017\(^{51}\); basal Hb with complete blood cells count and Wintrobe’s indices (mean cell volume, mean cell hemoglobin, and mean cell hemoglobin concentration), complete iron balance (serum iron, ferritin, transferrin, and transferrin saturation index [TSAT]), serum creatinine and creatinine clearance should be evaluated ideally at least 4 weeks before scheduled surgery. This allows to identify and classify the large majority of cases, falling into one of the following categories: (1) IDA; (2) anemia of chronic inflammation with ID; (3) anemia of chronic inflammation; and (4) anemia of other cause (Figure 2). Therefore, all patients with anemia should be screened for ID. In some circumstances (e.g., expected large intraoperative blood loss), it may be appropriate to evaluate ID also in nonanemic surgical patients.\(^{60}\) Patients with anemia without ID should be evaluated for other causes of anemia (Figure 3) and treated accordingly. In any case, screening and diagnosis of preoperative anemia should be performed early enough to allow sufficient time for its correction before surgery. ID is considered to be present if ferritin <30 ng/ml and/or TSAT <20%. It has been considered uncommon in patients with anemia of inflammation (or anemia of chronic disease), but this may be attributable to difficulties using the usual iron parameters in this setting. Because ferritin is an acute-phase reactant in inflammatory states, ferritin levels are often elevated independent of iron status; therefore, a higher cutoff (<100 µg/l) is needed to define IDA in these settings.\(^{56}\) Also in inflammatory states, serum iron and total iron binding capacity are generally low, limiting the utility of TSAT for diagnosing IDA. This may be explained by the potential for inflammation to dysregulate iron homeostasis.\(^{61}\) An important clinical connotation is taken on anemia caused by chronic inflammatory disease, a recent form of anemia caused by the action of certain humoral mediators, in particular interleukin (IL) 6 and IL3, which are involved in the inflammatory process, causing an inhibition of bone marrow erythropoiesis and a simultaneous limitation of iron availability due to the inhibition of gastrointestinal absorption and sequestration in the endothelial reticular system. A fundamental mediating role is played by hepcidin, a protein of hepatic synthesis, which is involved in iron metabolism and also plays a key role in the pathogenesis of juvenile hemochromatosis type II.\(^{61-63}\)

Figure 2. Algorithm for the diagnosis of preoperative anemia (Adapted from Muñoz et al\(^{59}\)).

3. It is important to identify ID, including in patients with anemia where there is no ID. 62–64 The serum hepcidin level may help distinguish between IDA and other anemias where there is no ID. Other laboratory parameters have also been suggested as candidates for identifying ID in inflammatory states 61–64: (1) reticulocyte Hb content below 29 pg per cell is suggestive of IDA, (2) the soluble transferrin receptor (sTfR) may also be useful because it is elevated in IDA and not in inflammatory states, (3) the ratio of sTfR and log of ferritin (ferritin index) has been used to identify IDA. Hepcidin, reticulocyte Hb, and sTfR testing are currently not readily available in many hospitals. However, as these tests become more generally available, they may become useful in clinical practice. The prevention of a preoperative anemic state is probably a necessary, though certainly not sufficient, condition for a medical approach tending towards “bloodless medicine,” since the increase in Hb obtained within the normal range, before specific therapies for the primary disease, generally results in an increased likelihood of avoiding a RBCs transfusion.

Statements

2. The high prevalence of preoperative anemia and its association with worse clinical outcomes justify screening for anemia before surgery of all patients. All patients with anemia should be evaluated for the cause of anemia (LoE 1 a; GoR A; consensus 100%).

3. It is important to identify ID, including in patients with anemia of inflammation (or anemia of chronic disease). Evaluation for ID should include iron status (serum iron, total iron binding capacity, TSAT, serum ferritin) (LoE 1 a; GoR A; consensus 100%).

4. Patients with IDA should be evaluated for the cause of the ID, whereas patients with anemia and normal iron status should be evaluated for coexisting causes of anemia (e.g., renal disease, primary hematologic disease, and nutrition deficiency). The most important criteria for defining absolute ID are ferritin <30 mg/ml and/or TSAT <20%; ferritin <100 mg/ml may define ID in inflammatory states. If available, either a reticulocyte Hb <29 pg or a serum hepcidin level <20 µg/l also suggest the presence of ID in inflammatory states (LoE 2 b; GoR B; consensus 100%).

Preoperative correction of anemia

Preoperative anemia in patients undergoing major digestive surgery increases morbidity, transfusion requirements, and longer postoperative hospital stay.65,66 Moreover, perioperative anemia is recognized as strongly and independently related to postoperative mortality (adjusted odds ratio 2.36).65,67 RBCs transfusions carry several complications, culminating in a high incidence of morbidity and mortality. In particular, they are related to an increased length of hospital stay, rate of discharge to an inpatient facility, worse surgical and medical outcomes, allergic reactions, transfusion-related acute lung injury, fluid overload, venous thromboembolism, graft versus host disease, immunosuppression, and postoperative infections. In addition, blood transfusions are responsible for an increased burden on the health care system.68–70 Two previous prospective studies of the Italian ColoRectal Anastomotic Leakage (iCral) study group60,71 identified intra- and post-operative blood transfusions as an independent factor with a negative influence on all early outcomes after colorectal surgery. In particular, they resulted as a major independent determinant of anastomotic leakage. A recent propensity score matched analysis on 4529 patients (550 patients after propensity score matching) who underwent colorectal resections showed that intra- and/or post-operative RBCs transfusions are related to a significantly higher risk of overall morbidity (odds ratio [OR] = 3.07; 95% confidence interval [CI] = 2.13, 4.43; P = 0.001), major morbidity (OR = 6.06; 95% CI = 3.17, 11.6; P = 0.001), and anastomotic leakage (OR = 4.72; 95% CI = 2.09, 10.66; P = 0.0002). Interestingly, in a subgroup analysis on patients that received intra- and post-operative RBCs transfusions (IPBT), although the majority of IPBT was administered as a consequence of hemorrhage and/or major adverse events, after adjustment accounting for 22...
cova riables, IPBT still resulted as a significant source of a higher risk of major morbidity and anastomotic leakage rates after colorectal surgery.41 A position paper on PB by SIARTI recommends to postpone surgery until anemia has been corrected in noncancer patients before elective major surgery52 and the ERAS Society recommends to screen for preoperative anemia and to correct it when present.44

Existing evidence suggests that treating preoperative anemia with iron therapy and/or erythropoiesis-stimulating agents (ESAs) may increase Hb levels, although some inconsistency exists regarding its role in decreasing perioperative RBCs transfusion rates. A significant increase in Hb when iron is given preoperatively in patients with IDA undergoing major digestive surgery is reported in the literature. Three22,24,25 out of four4 randomized controlled trials (RCTs) found higher preoperative Hb levels in the intravenous iron group compared with placebo or standard of care group. Froessler et al32 randomized patients undergoing abdominal surgery with IDA to intravenous ferric carboxymaltose (FCM) or standard of care (no treatment, continued observations, oral iron recommendations). Hb values, although similar at randomization, improved by 0.8 g/dl with intravenous FCM compared with 0.1 g/dl with standard of care (P = 0.01) by the day of admission. Despite there was no difference in Hb levels at discharge, the intravenous FCM group had higher Hb levels compared with the usual care group (1.9 vs. 0.9 g/dl, P = 0.01) at 4 weeks after discharge. However, the study was terminated early due to higher-than-expected poor outcomes in the standard of care group. In a recent double-blinded RCT3 patients with IDA and colorectal cancer scheduled for elective surgery were randomized to receive either intravenous iron iso-maltoside (20 mg/kg, up to 1000 mg infused over 30 minutes) or usual preoperative care (no treatment) 3 weeks before surgery. The Hb and ferritin concentrations were higher in the iron iso-maltoside group than the control group across all perioperative time points (group time interaction P = 0.042 and P < 0.001, respectively). The mean Hb change from baseline to surgery was higher in the iron iso-maltoside group (7.8%; 95% CI = 3.2, 12.3 g/l) than in the control group (1.7%; 95% CI = −1.9, 5.3 g/l) (mean difference 6.1, 95% CI = 0.3, 11.8 g/l; P = 0.040). Despite iron studies were not part of the primary inclusion criteria, but formed part of the predefined subgroup analysis, the PREVENTIT study36 confirmed a significantly higher Hb concentration at the time of surgery in the intravenous iron group compared with placebo with the main difference being 4.7 g/l (95% CI = 2.7, 6.8; P = 0.0001); Hb concentrations were not significantly different in the immediate postoperative days, but the intravenous iron group had significantly higher Hb concentrations at 8 weeks (MD 10.7 g/l, 95% CI = 7.8, 13.7) and at 6 months after surgery (MD 7.3 g/l, 3.6–11.1). Nevertheless, only 49.6% of patients had digestive surgery. In contrast to the other studies, Edwards et al31 found no significant change in mean Hb levels between groups for either the whole study population or the subgroup of patients with anemia. However, a subgroup of anemic patients was not specified as IDA, there were only 18 patients in both intravenous iron and placebo groups, and the median Hb concentration in the placebo group at recruitment was 124 g/l. Other six nonrandomized studies evaluated Hb variation as the outcome in colorectal cancer patients.74–80 Almost every study evaluated patients with IDA.75,76,78,80 All but one46 reported a significant increase in Hb concentration at surgery in the intravenous iron group compared with placebo or standard of care. Whether this increase in Hb levels translates into a reduction of RBCs transfusion rate is still unclear.

Richards et al44 found that the median units of transfused RBCs were not statistically different between intravenous iron and standard of care groups from randomization to 30 days postoperatively (0.65 vs. 0.61 units) to 6 months postoperatively (0.94 vs. 0.75 units). However, specific iron studies were not part of the primary inclusion criteria, but were part of the predefined subgroup analysis and blood transfusion definition included both RBCs and any other blood component. Less than half of the procedures were within digestive surgery. Fung et al73 reported a better though nonsignificant RBCs transfusion rate in favor of the intravenous iron group (5%) compared with the standard of care group (20%) in the postoperative period. No differences were found in intraoperative RBCs transfusions. Conversely, Froessler et al32 showed a significant reduction in intraoperative RBCs transfusion rate in the intravenous iron group (0%) compared with the standard of care group (16%). No difference was found in the postoperative period. The median number of units per transfused patient was also decreased in the intervention group (two compared with three in the control group; P = 0.016). Wilson et al12 did not find any statistically significant difference in postoperative transfusion rates between their two cohorts after multivariate. Laso-Morales et al32 also found no significant difference in the number of patients who required RBCs transfusion between patients with anemia on intravenous iron therapy and those on standard care (16% vs. 17%). In contrast, in a recent propensity score matched analysis56 there were significantly fewer patients that required transfusions in the intravenous iron treatment group (8 vs. 30 patients, P = 0.006). Calleja et al39 found that the perioperative and 30-day postoperative percentages of patients transfused (9.9% vs. 38.7%, P < 0.0001) and the number of RBCs transfused units (0.2 ± 0.5 vs. 0.8 ± 0.4; P < 0.0001) were significantly reduced in patients treated by intravenous FCM. In the studies mentioned above, there is a lack of information about intraoperative blood loss and/or standardization of transfusion criteria that can lead in bias. Furthermore, some studies included in the control groups patients undergoing oral iron therapy and RBCs transfusions. Okuyama et al35 retrospectively examined a series of anemic patients who underwent surgery for colorectal cancer. They measured intraoperative blood loss and defined criteria for transfusion (intraoperative Hb of about 70 g/l with unstable hemodynamics). There was no significant difference in intraoperative blood loss and urine output. Intraoperative RBCs transfusion rate was 9.4% in the iron supplementation group and 27.4% in the control group (P < 0.05). Mean Hb and hematocrit values immediately before the operation were significantly lower in the transfusion group, at 9.1 ± 1.9 mg/dl and 27.4% ± 5.4%, respectively (P < 0.0001). Significantly lower LOS has been reported for intravenous iron infusion.75,77 A recent multicenter RCT, the IVICA Trial, compared the efficacy of intravenous and oral iron in reducing allogeneic RBCs transfusion requirement in anemic patients undergoing colorectal cancer surgery. Increases in Hb values after treatment were higher with intravenous iron (median 15.5 vs. 5.0 g/l; P < 0.001), with fewer anemic patients at the time of surgery (75% vs. 90%; P = 0.048). Despite this, there was no difference in RBCs transfusion use from recruitment to trial completion in terms of either volume of blood administered or number of patients transfused. No difference was recorded also regarding morbidity and mortality rates. In the long-term follow up for oncological outcomes42 no significant differences were reported in 5-year overall survival (HR = 1.22; 95% CI = 0.65, 2.28; P = 0.522), in cancer-specific 5-year survival (HR = 1.17; 95% CI = 0.56, 2.42; P = 0.675) or in 5-year disease-free survival (HR = 1.08; 95% CI = 0.61, 1.92; P = 0.79) rates. Trentino et al16 conducted a cost-effectiveness analysis of a preoperative anemia and suboptimal iron stores screening program for elective colorectal surgery. Among patients screened, 180 (40.8%) received intravenous iron and 16 (3.6%) received oral iron. Anemic patients receiving intravenous iron treatment showed a mean increase of Hb values of 85 g/l. The estimated
mean cost of screening and treating preoperative anemia was AUD 332 (GBP 183; USD 231; and Euro 204) per screened patient. In the propensity score-weighted analysis, screened patients showed a 52% reduction of RBCs transfused units compared with those not screened (rate ratio = 0.48; 95% CI = 0.36, 0.63; P < 0.001). The mean difference in screening, treatment, and hospitalization costs between groups was AUD 3776 (GBP 2080; USD 2629; Euro 2325, 95% CI AUD 1604, 5947; P < 0.001) in favor of the group screened for anemia and suboptimal iron stores. None of the studies mentioned above reported serious adverse reactions to intravenous iron administration. Actually, the rates of adverse reactions to intravenous iron administration are low, around 40 per million doses of low molecular weight iron dextran and 130 per million doses of high molecular weight iron dextran administered in the United States. The reported reactions included dyspnea, chest pain, and hypotension. Some life-threatening reactions (e.g., anaphylaxis) are rare, being reported <4 per million doses. Some patients may exhibit complement activation-related pseudoallergy, which should not be misinterpreted as hypersensitivity. This occurs in approximately 1:200 iron-treated patients and consists of arthralgia, myalgia, or flushing, but without associated hypotension, tachycardia, tachypnea, wheezing, stridor, or periorbital edema. Symptoms abate without intervention, and the patient may be rechallenged with a different iron formulation. A recent meta-analysis reported an increased risk of infection with intravenous iron versus no iron or oral iron, but the extent of this increase was modest (relative risk [RR] = 1.16; 95% CI = 1.03, 1.29). Subgroup analysis by clinical setting found evidence of an increased risk of infection in patients with IBD (RR = 1.73; 95% CI = 1.11, 2.71; P = 0%; P = 0.02; 6 RCTs; 908 participants). There are few data regarding adverse events related to ESAs + iron therapy: three patients suffered from transient hypertension after treatment; one trial reported a local rash, and in one trial the therapy may have been associated with fever and constipation. Some concern regarding thromboembolic events remains, although the increase in risk appears to be small and absent in patients receiving prophylactic anticoagulation. Anyhow, this therapy can be particularly suitable for types of anemia that are not only related to ID (e.g., anemia of inflammation) and when the time available to treat anemia before surgery is not enough to allow Hb concentration increase by iron therapy alone. Future studies should help to refine the optimal ESAs treatment protocol. From a practical point of view, the treatment algorithm of preoperative anemia for surgical patients suggested by the panel is shown in Figure 4.

Statements

5. The management of preoperative anemia should be performed early enough before major digestive surgery (2–4 weeks before surgery). The aim is to improve Hb concentration which may decrease perioperative RBCs transfusion. (LoE 2 a; GoR A; consensus 100%).

6. Iron therapy should be administered as a treatment for IDA before major digestive surgery. Intravenous iron is preferable

![Figure 4](https://example.com/figure4.png)

Figure 4. Management of preoperative anemia (Adapted from Munting et al). ESAs indicate erythropoiesis-stimulating agents (e.g., recombinant human erythropoietin—40,000 IU, consider referral to a nephrologist for patients with chronic kidney disease); FCM, ferric carboxymaltose; Hb, hemoglobin; IV, intravenous; ns, normal saline; SCF, sodium ferrogluconate; TSAT, transferrin saturation.
to oral iron, possibly through single high-dose administration. Caution should be taken in patients with IBD. (LoE 2 a; GoR A; consensus 100%).

7. ESAs should be administered in association with intravenous iron as a treatment for IDA before major digestive surgery when iron therapy alone is ineffective, time to surgery is short, IDA is associated with chronic inflammation or anemia is directly related to inflammation. (LoE 2 b; GoR B; consensus 97.2%).

Perioperative management of antiplatelet and anticoagulant treatments

Surgical candidates taking chronic anticoagulant or antiplatelet therapies could be exposed to a higher surgery-related bleeding risk and thus to a worst postoperative prognosis. On the other hand, the suspension of these therapies could lead to a higher thromboembolic risk. To reach the best possible surgical outcome, a balance between hemorrhagic and thrombotic events should be reached. With progressive population aging and the advancements of medicine, an increasing number of aged patients on anticoagulant/antithrombotic therapy for primary and secondary prevention is undergoing major surgery. A recent study by a North American insurance company showed a 4.4% risk of a perioperative hemorrhagic adverse event among 185,931 patients (age range 65–79 years) who underwent surgery, with a consequent increase of costs for the company. This emphasizes that perioperative management of antiplatelet and anticoagulant therapies is complex and should be decided by a multidisciplinary team (surgeon, anesthesiologist, cardiologist, and hematologist).

Management of antiplatelet therapy

Antiplatelet drugs, such as acetylsalicylic acid (ASA) and the P2Y12 inhibitors clopidogrel and prasugrel, irreversibly inhibit platelet function so that 7 to 10 days (i.e., platelet lifespan) of preoperative interruption is needed to fully restore platelet function, whereas with the P2Y12 inhibitor ticagrelor, which reversibly inhibits platelet function, 2 to 4 days of interruption are needed to restore platelet function. With postoperative management, a maximal antiplatelet effect occurs within minutes after resuming ASA, within 2 hours after resuming ticagrelor, at approximately 3 days after resuming prasugrel, and at 4 to 5 days after resuming clopidogrel at a 75mg maintenance dose.99,100

Antiplatelet therapy prescribed for primary prevention.

Surgical candidates taking antiplatelet therapy for primary prevention are advised to suspend therapy before surgery. Studies on this cohort of patients have demonstrated that the risk of perioperative bleeding due to continuing this therapy outweighs the risk of ischemic events linked to its suspension. Bleeding risk was 4.6% in the aspirin group versus 3.8% in the placebo group; ischemic events risk was 6.2% in the aspirin group versus 6.3% in the placebo group.101-107 Suspension of ASA is advised 5–7 days before surgery, especially for procedures deemed to have a high bleeding risk (Table 3).

Antiplatelet therapy prescribed for secondary prevention.

Perioperative management of antiplatelet therapy taken for secondary prevention depends on different elements: the kind of therapy, its use as monotherapy or associated with other drugs (e.g., Dual Antiplatelet Therapy [DAPT]), the time interval between the percutaneous coronary intervention (PCI) and surgery, the balance between the bleeding risk for a specific surgical procedure (therapy suspension) and the thrombotic risk (therapy continuation). The risk of thrombosis is classified as low, intermediate, and high (Table 4), based on clinical history (myocardial infarction [MI] during PCI, history of previous and multiple MI, history of stent thrombosis under antiplatelet therapy, reduced left ventricular ejection [<40%], severely impaired renal function, poorly controlled diabetes) and angiographic findings (severely calcified lesion, left main PCI, chronic total occlusion, bifurcation/crush technique, bypass graft PCI, stent malposition, long and multiple stents). Before making a definitive decision based on the thrombotic and bleeding risk, the possibility of postponing surgery should also be considered. When indicated for secondary prevention, ASA significantly reduces the risk of subsequent cardiovascular events and it’s indicated as a lifelong therapy. In the POISE-2 substudy of 470 patients with prior PCI, the authors found a reduction in a composite risk of death and MI for the patients on low-dose perioperative aspirin, with a concomitant increase in bleeding risk.99 Aspirin should be discontinued from 3 to 5 days before surgery only in case the bleeding risk largely outweighs the potential cardiovascular benefit.108,109

P2Y12 inhibitors as monotherapy for secondary prevention.

Oral inhibitors of the platelet P2Y12 receptor for adenosine may be used as monotherapy in the following settings: secondary prevention for previous acute coronary syndromes, as the final stage of de-escalation strategy following MI/PCI, after a recent stroke, after a peripheral vascular procedure or in case of allergy/intolerance to aspirin. These drugs are associated with a higher postoperative bleeding risk compared with aspirin, due to their mechanism of action. In the event of a surgical procedure, a multidisciplinary consultation (cardiologist, surgeon, and anesthesiologist) should drive the decision whether to suspend, shift to aspirin, or continue P2Y12 inhibitors when there is a high risk of bleeding. When dealing with these patients, surgery should be performed in hospitals equipped with a 24/7 interventional cardiology unit.72,109

Statement #8: Antiplatelet therapy with aspirin should be discontinued 5–7 days before surgery, when prescribed for primary prevention. In patients with previous PCI it is recommended to continue aspirin perioperatively if bleeding risk allows it. In patients treated with P2Y12 inhibitors who need to undergo elective surgery, postponing surgery for at least 5 days after cessation of ticagrelor and clopidogrel (time from last drug intake to intervention)—and for 7 days in the case of prasugrel—if clinically feasible, should be considered unless the patient is at high risk of an ischemic event. Surgery should be performed in hospitals equipped with a 24/7 interventional cardiology unit. LoE 2 a, GoR B, consensus 100%.

Dual antiplatelet therapy. DAPT, the combination of ASA and an oral P2Y12 inhibitor, remains a highly effective therapy to prevent coronary artery stent thrombosis in the period at

Table 3.

<table>
<thead>
<tr>
<th>Type of surgery</th>
<th>Low</th>
<th>Intermediate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hernia</td>
<td></td>
<td></td>
<td>Gastrectomy</td>
</tr>
<tr>
<td>Plastic Surgery of incisional hemia</td>
<td></td>
<td></td>
<td>Hepato-bilio-pancreatic surgery</td>
</tr>
<tr>
<td>Cholecystectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colectomy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small bowel surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric resection</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.
Table 4. Thrombotic risk after PCI (Adapted from Zheng and Roddick106).

<table>
<thead>
<tr>
<th>Survey to PCI time</th>
<th>POBA</th>
<th>BMS</th>
<th>1st generation DES</th>
<th>2nd generation DES</th>
<th>BVS</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-month</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>1–3 months</td>
<td>Intermediate</td>
<td>High</td>
<td>Intermediate</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>4–6 months</td>
<td>Intermediate</td>
<td>High</td>
<td>Intermediate</td>
<td>High</td>
<td>Low/Intermediate</td>
</tr>
<tr>
<td>6–12 months</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>>12 months</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

*BMS indicates bare-metal stent(s); BVS, bioresorbable vascular scaffold; PCI, percutaneous coronary intervention; POBA, plain old balloon angioplasty.

The interval between coronary stenting and the surgery will also affect management because the risk for cardiovascular events is highest within 4 to 6 weeks after stenting but may persist for 6 to 12 months. In these cases, the higher bleeding risk due to antiplatelet therapy is acceptable if compared with the high risk of thrombotic events due to their suspension. A period of DAPT after PCI is required to prevent stent-related thrombotic complications while vascular healing and platform reendothelialization are ongoing, a process that lasts several months. Premature cessation of DAPT during this period is associated with a high risk for ischemic events. In the evaluation process of noncardiac surgical candidates on DAPT, it is important to divide patients with a stable coronary disease from the ones with an acute one. The acute disease phase is considered the minimum time interval from the acute event during which DAPT shouldn’t be discontinued for the high risk of thrombotic events and it varies according to the revascularization procedure and the type of stent used. DAPT is mandatory 1–3 months after a coronary stenting procedure, but does not seem to be justified beyond 1 year with the newer generation drug-eluting stents, due to the small risk of late stent thrombosis and the consistent risk of bleeding. DAPT should be continued at least 1 year after MI not treated with PCI and therefore it is recommended to postpone surgical procedures after this period. In case of stable coronary disease, surgical procedures with low/intermediate bleeding risk and low thrombotic risk can be carried out after suspension of P2Y\(_{12}\) inhibitors and continuing ASA. In case of a high hemorrhagic risk surgical procedure, ASA may be discontinued after multidisciplinary consultation. In patients with acute coronary disease, therefore needing to continue DAPT during the high thrombotic risk period, surgery should be scheduled at the end of this time frame. If the operation cannot be delayed, this should be done after a multidisciplinary consultation in hospitals provided with interventional cardiology unit, following these indications: (1) DAPT can be continued in low bleeding risk procedures in patients with high/intermediate thrombotic risk; (2) ASA should be continued after suspension of P2Y\(_{12}\) inhibitors and in case of intermediate/high bleeding risk procedures and a high/intermediate thrombotic risk; (3) in high/intermediate bleeding risk procedures with high thrombotic risk, ASA should be continued and associated with an intravenous antiplatelet bridge therapy after suspension of oral P2Y\(_{12}\) inhibitors; (4) bridging with short-acting tirofiban, eptifibatide (glycoprotein IIb/IIIa inhibitors), or cangrelor, although not routinely recommended, may be considered in high-risk situations such as surgery within 2 to 4 weeks of coronary stenting. Strict cooperation between cardiologists and surgeons, and perioperative admission in intensive care units are advisable in these situations. From higher risk after stent implantation. Perioperative management of antiplatelet therapy should be judiciously decided for stented patients undergoing surgical treatment. In the first year after PCI, patients have a 4%–9% probability of receiving a noncardiac surgical procedure. This risk increases to 5%–25% in the following 5 years. Therefore, these patients, as shown in observational studies, develop a twofold higher risk of cardiac events (e.g., stent occlusion, MI, or cardiac death) compared with patients without a history of PCI. Surgical procedures activate the coagulation cascade by igniting an inflammatory response, and therefore thrombosis. This represents one of the higher risks for patients with previous PCI. Perioperative management can vary depending on the timing of stent placement, the stent type (drug-eluting or bare metal), the stent location, whether the stent is in a dominant or nondominant coronary artery and the number and length of stents. Management options vary from stopping both antiplatelet drugs and bridging with a glycoprotein IIb/IIIa inhibitor or cangrelor to continuing both drugs without interruption. The recommendations for bioresorbable polymer stents are the same as for second-generation drug-eluting stents (DES).
a practical point of view, the perioperative management of antiplatelet drugs is reported in Figure 5.

Statement #9: In patients under DAPT, if suspension of P2Y\textsubscript{12} inhibitor is indicated, it is recommended to discontinue ticagrelor for 3–5 days, clopidogrel for 5 days, and prasugrel for 7 days before noncardiac surgery. Patients with previous PCI should continue aspirin perioperatively if bleeding risk allows it. It is recommended to restart the P2Y\textsubscript{12} inhibitor therapy as soon as possible (48 hours) after surgery, according to interdisciplinary risk assessment. LoE 2 a; GoR B; consensus 100%.

Management of anticoagulant therapy

The management of anticoagulation in patients undergoing surgical procedures is challenging since interrupting anticoagulation for a procedure transiently increases the risk of thromboembolism. At the same time, surgery and invasive procedures have associated bleeding risks that are increased by the anticoagulant(s) administered for thromboembolism prevention. If the patient bleeds from the procedure, their anticoagulant may need to be discontinued for a longer period, resulting in a longer period of increased thromboembolic risk. A balance between reducing the risk of thromboembolism and preventing excessive bleeding must be reached for each patient. A practical algorithm for anticoagulant discontinuation in individuals undergoing elective surgery is shown in Figure 6.

Direct oral anticoagulants. Non-Vitamin-K Antagonist Oral Anticoagulants, also called Direct Oral Anticoagulants (DOACs), are synthetic molecules characterized by the ability to block a specific coagulation factor: dabigatran is a selective thrombin inhibitor while rivaroxaban, apixaban, edoxaban are direct Factor Xa inhibitors.

DOACs are indicated in the following situations: treatment of deep vein thrombosis and pulmonary embolism; prophylaxis of

Figure 5. Perioperative management of antiplatelet drugs (Adapted from Douketis and Spyropoulos and Halvorsen et al100,109). *Based on surgery/procedure bleed-risk assessment. **Routine use is not suggested. If used, initiate within 72 hours from P2Y\textsubscript{12} inhibitor discontinuation at a dose of 0.75 mg/kg/min; resume within 6 hours postprocedure for a minimum of 48 hours and a maximum of 7 days total. Very-low-quality data for antiplatelet bridging with glycoprotein IIb/IIIa inhibitors (e.g., eptifibatide, tirofiban). *** P2Y\textsubscript{12} inhibitors can be resumed within 24 hours postprocedure at a maintenance dose. †For ticagrelor, 3- to 5-day interruption. ††For clopidogrel, 5-day interruption. §For prasugrel, 7- to 10-day interruption. ASA indicates acetylsalicylic acid.

Figure 6. Algorithm for anticoagulant discontinuation in individuals undergoing elective surgery (based on Adapted from Douketis and Spyropoulos100).

Figure 5. Perioperative management of antiplatelet drugs (Adapted from Douketis and Spyropoulos and Halvorsen et al100,109). *Based on surgery/procedure bleed-risk assessment. **Routine use is not suggested. If used, initiate within 72 hours from P2Y\textsubscript{12} inhibitor discontinuation at a dose of 0.75 mg/kg/min; resume within 6 hours postprocedure for a minimum of 48 hours and a maximum of 7 days total. Very-low-quality data for antiplatelet bridging with glycoprotein IIb/IIIa inhibitors (e.g., eptifibatide, tirofiban). *** P2Y\textsubscript{12} inhibitors can be resumed within 24 hours postprocedure at a maintenance dose. †For ticagrelor, 3- to 5-day interruption. ††For clopidogrel, 5-day interruption. §For prasugrel, 7- to 10-day interruption. ASA indicates acetylsalicylic acid.

Figure 6. Algorithm for anticoagulant discontinuation in individuals undergoing elective surgery (based on Adapted from Douketis and Spyropoulos100).
The molecule is a selective and reversible Factor Xa inhibitor; when taken with food, the absorption is maximal, with a plasma peak 2–3 hours after administration and a half-life of 9–12 hours. A selective mechanism of action towards a specific coagulation factor, the little interaction with other drugs, little interference with foods (for which a dietary restriction is not necessary) and a predictable therapeutic effect with the recommended treatment schedules (for which close laboratory monitoring and consequent dosage modifications are not necessary). Last but not least, DOACs are characterized by a reduced risk of intracranial hemorrhage compared with patients receiving VKAs.

Dabigatran. Dabigatran etexilate, once taken orally, is rapidly converted to dabigatran, with a rapid peak of action (2 hours) and a half-life is 8–14 hours. Apixaban is eliminated by different routes (including hepatic metabolism, renal and intestinal routes): the use of CYP3A4 inhibitors (e.g., ketoconazole and ritonavir) are contraindicated and a dose reduction is required in case of at least two of the following situations: age >80 years, weight <60 kg, serum creatinine >1.5 mg/dl or CrCl 15–29 ml/min.

Rivaroxaban. This is a selective and reversible Factor Xa inhibitor; when taken with food, the absorption is maximal, with a plasma peak 2–3 hours after administration and a half-life of 7–11 hours. The elimination is renal and fecal after hepatic metabolism.

Apixaban. Apixaban, and Rivaroxaban and Edoxaban, inhibit free and thrombus-associated Factor Xa. The administration is oral, twice a day; the peak is reached in 3 hours and the half-life is 8–14 hours. Apixaban is eliminated by different routes (including hepatic metabolism, renal and intestinal routes): the use of CYP3A4 inhibitors (e.g., ketoconazole and ritonavir) are contraindicated and a dose reduction is required in case of at least two of the following situations: age >80 years, weight <60 kg, serum creatinine >1.5 mg/dl or CrCl 15–29 ml/min.

Edoxaban. This agent is rapidly absorbed from the gastrointestinal tract, reaching peak plasma concentrations after 1–2 hours with a half-life of 8–10 hours. Elimination follows a biphasic pattern, 35% being excreted by the kidneys and the remainder by feces. A dose reduction is required in case of at least two of the following situations: age >80 years, weight <60 kg, serum creatinine >1.5 mg/dl, or CrCl 15–29 ml/min.

Patients undergoing a planned gastrointestinal intervention must be instructed on the therapeutic scheme to be adopted in the hours preceding the surgery, on the basis of patients’ characteristics and therapeutic schedule. When suspension of DOAC therapy is required, timing of interruption is at least 24–48 hours with an additional 24 hours in case of increased drug plasma levels (excess body weight, older age). In case of impaired renal function and major surgery, an interruption of 72 and 96 hours is indicated in patients on dabigatran with CrCl 50–80 ml/min and CrCl 30–50 ml/min, respectively.

High thrombotic risk is defined by the presence of mechanical aortic valve prosthesis and any thromboembolic risk factor; old generation mechanical aortic valve prosthesis; mechanical mitral or tricuspid valve replacement; recent (<3 months) stroke or transient ischemic attack (Table 5). Surgical procedures considered at high bleeding risk are major surgery with extensive tissue injury, cancer surgery (in particular solid tumor resection), anastomosis, nephrectomy and kidney biopsy, colonic polyp resection, percutaneous endoscopic gastrotomy placement, endoscopic retrograde cholangiopancreatography, surgery in high vascular organs (kidneys, liver, and spleen), any major procedure (duration >45 minutes), neuraxial and spinal anesthesia (Table 6).

Except those few patients at high thrombotic risk, preoperative bridging with low molecular weight heparin (LMWH) or unfractionated heparin (UFH) is not recommended in patients...
on DOACs, as bridging is associated with increased bleeding risk without reduction of thromboembolic risk.

Statements

10. Bridging of DOACs with LMWH or UFH is recommended only in patients with high thrombotic risk undergoing major gastrointestinal surgery. LoE 2 a; GoR B; consensus 93.5%.

11. When a patient in DOACs therapy requires gastrointestinal surgery, evaluation of coagulation tests, renal and hepatic function are recommended. Interruption of DOACs administration should be based on drug compound, renal function, and bleeding risk. LoE 2 a; GoR B; consensus 96.8%.

12. In case of minor gastrointestinal surgery or other procedures in which bleeding can be easily controlled, discontinuing anticoagulant therapy is not recommended. LoE 1 b; GoR A; consensus 100%.

13. In patients treated with DOACs undergoing low bleeding risk surgery, it is recommended that the procedure is performed at the through level (12–24 hours after the last drug intake). LoE 1 b; GoR A; consensus 100%.

14. Planned invasive surgical interventions at high risk of bleeding require temporary discontinuation of DOACs: the interruption regimen should consider DOAC compound, renal function, and bleeding risk. LoE 2 a; GoR B; consensus 100%.

15. In an urgent surgery setting, coagulation tests and assessment of DOACs plasma levels should be considered. LoE 2 b; GoR B; consensus 100%.

16. In patients treated with DOACs undergoing gastrointestinal urgent surgery at high risk of bleeding, it is recommended that DOACs therapy is immediately interrupted. LoE 2 a; GoR B; consensus 100%.

17. Idarucizumab (in patients on dabigatran), prothrombin complex concentrate (PCC) or activated PCC (when specific reversal agents are not available) should be considered in patients undergoing urgent, nonminor-risk surgery. LoE 3 a; GoR B; consensus 100%.

18. Use of low-dose DOACs to reduce bleeding risk is not recommended. LoE 2 a; GoR B; consensus 100%.

After surgery, if immediate and complete hemostasis has been achieved, DOACs can generally be resumed 6–8 hours after the end of procedure. When surgery requires more time (>48–72 hours) without a coverage with DOACs (in high bleeding risk surgery), or when oral administration is not feasible (artificial ventilation, nausea, or vomiting, etc.), a thromboprophylaxis with LMWH or UFH should be considered. From a practical point of view, suspension and restoring of DOACs therapy are reported in Table 7.
Vitamin K antagonists. Coumarins are low molecular weight compounds rapidly absorbed after oral intake, circulating in the blood bound to albumin; therefore, only a small fraction of the drug, the active one, is free. Their half-life depends on the drug and dosage scheme; the metabolism is substantially hepatic, while the metabolites, partly still active, are eliminated with urine and feces. VKAs act by inhibiting the synthesis of vitamin K-dependent coagulation factors (factors II, VII, IX, and X; anticoagulant proteins S and C). Warfarin and Acenocoumarol are the most frequently administered VKAs in Italy (Phenprocoumon is also very common in Europe). Warfarin is a compound of a mixture of two isomers, levo- and dextrorotary, both with rapid absorption but different half-life (32 and 46 hours, respectively). Acenocoumarol has a shorter half-life (12 hours) ensuring a more rapid anticoagulant reversibility. VKAs are indicated in many situations for the treatment and prevention of thromboembolic episodes: treatment of deep vein thrombosis and pulmonary embolism, prophylaxis of deep vein thrombosis recurrence, atrial fibrillation, valvular heart diseases and heart valve prosthesis, antiphospholipid antibody syndrome.

Minor procedures do not require VKAs stop or bridging therapy with LMWH or UFH. The International Normalized Ratio (INR) should be monitored to ensure drug levels are in range. These recommendations are to consider both in case of mechanical valves and in atrial fibrillation.

The evidence to support bridging therapy is not consolidated; we have also to consider that current generation of mechanical aortic prosthetic valves does not have the same thrombotic risk as the old one. For these reasons, bridging may not be necessary in patients not at high thromboembolic risk undergoing major surgery. UFH is the only drug approved for bridging in case of mechanical prostheses. However, the off-label use of LMWH was found to be more manageable, not burdened by thrombocytopenia and with the same risk of hemorrhage and thrombotic events as intravenous UFH. When a LMWH is used, a therapeutic dose twice a day should be undertaken. When interruption is necessary in high bleeding risk surgery, the BRIDGE Trial has demonstrated the same incidence of thromboembolic complications in patients bridged with heparin against a higher incidence of hemorrhagic events. Therefore, heparin bridging is not recommended. Interruption of VKAs aims to normalize coagulation, or at least bring it close to normalization. However, it must be remembered that many factors can influence it: the molecule (half-life of warfarin is not the same of acenocoumarol or phenprocoumon), patient age, liver function. The recommendation is based on the assumption that INR >2 is accompanied by an increased risk of bleeding, while a near-normal INR does not needing major surgery and INR <1.3, we recommend suspension of VKAs therapy 5 days before surgery and a bridging therapy with LMWH or UFH, LoE 2 a; GoR B; consensus 100%.

21. When VKAs are interrupted before surgery, the anticoagulant therapy should restart 12–24 hours after the invasive procedure, if the bleeding is well controlled. In case of bridging therapy, LMWH or UFH should be started with VKA 24 hours after surgery, if bleeding is well controlled. Heparin therapy should be discontinued once the INR range has been reached. LoE 2 a; GoR B; consensus 100%

Reversal of VKAs can be obtained with vitamin K administration, plasma transfusion, or PCC. Vitamin K can be administrated orally with a late reduction of INR (18–24 hours) or intravenously with a time of 4–6 hours to get a reduced INR; despite the INR, the coagulation factors may still not be normalized. When a rapid reversal is needed for immediate major surgery, plasma transfusion and PCC should be used. Four factors-PCC is the preferred option: the dose is established on the basis of INR; when this plasma-derivative concentrate is not available, three-factor PCC or plasma may be used.

Prehabilitation to improve anemia tolerance and integration of patient blood management with enhanced recovery after surgery programs

Prehabilitation to improve anemia tolerance

Multimodal prehabilitation, consisting of physical, nutritional, and psychological optimization, aims at strengthening physiologic reserve by improving preoperative functional capacity, with the ultimate goals to better withstand surgical stress, reduce postoperative complications, and accelerate surgical recovery. In this clinical context, several multimodal prehabilitation programs also include optimization strategies to correct preoperative anemia with a twofold purpose to increase functional capacity (arterial oxygen content and therefore oxygen consumption, VO₂) and Hb concentrations before surgery. For these reasons, ERAS programs commonly recommend multimodal prehabilitation as a preoperative element to better prepare patients for surgery and to reduce postoperative complications after abdominal surgery. To the best of our knowledge, no studies investigating if prehabilitation might enhance anemia tolerance for surgical patients undergoing major abdominal surgery have been conducted to date. However, the rationale of using prehabilitation to enhance anemia tolerance of surgical patients physiologically sounds. In fact, acute and chronic anemia determine as compensatory mechanisms an increase of cardiac output, an organ-specific reduction of vascular resistance, an increase of oxygen extraction, and activate hypoxic cellular mechanisms that maintain oxygen homeostasis. However, these compensatory mechanisms might be impaired or absent in approximately 30% of surgical patients, characterized by reduced functional capacity, malnutrition, frailty, and/or multiple comorbidities (cardiorespiratory and metabolic diseases). Therefore, it might be speculated that multimodal prehabilitation, by increasing cardiac performance (oxygen delivery), peak
oxygen consumption (VO₂-peak), and oxygen consumption at the anaerobic threshold (VO₂-AT), and throughout other adaptive cellular mechanisms, might enhance anemia tolerance of high-risk surgical patients, thus correcting tissue hypoxia. Moreover, multimodal prehabilitation programs frequently include preoperative anemia optimization strategies with the intent to correct preoperative anemia and increase preoperative functional capacity, rather than improving anemia tolerance. If effective, these interventions might also improve oxygen delivery by increasing Hb concentrations and thus arterial oxygen content. It must also be considered that, even though multimodal prehabilitation might be beneficial for improving surgical outcomes, it is difficult to measure individual anemia tolerance in surgical patients as point-of-care physiological measurements of anemia tolerance are not available. Instead, clinical surrogate measures of anemia tolerance are commonly adopted and used in clinical practice (e.g., complications and mortality).

In contrast, correcting preoperative anemia might also facilitate the response to prehabilitation by further improving preoperative functional capacity. Nevertheless, studies establishing the relationship between preoperative functional capacity and anemia have demonstrated that reduced Hb concentrations poorly explain exercise capacity. In fact, a prespecified substudy of the METS trial has demonstrated that Hb concentration explains only 3.8% of the variation in VO₂ peak and VO₂-AT; after adjustment, each 10 g/L increase in Hb concentrations was associated with a 0.71 ml/kg/min (95% CI = 0.48, 0.93) increase in VO₂ peak, and a 0.32 ml/kg/min (95% CI = 0.16, 0.48) increase VO₂-AT. This suggests that other factors contribute to impair preoperative functional capacity aside from preoperative anemia (e.g., gender, age, frailty, sarcopenia, neoadjuvant therapy, comorbidities). Interestingly, previous studies have suggested that Hb mass is a better determinant of exercise capacity than Hb concentration, although this measure is not always readily available in the clinical setting. However, adjusted Hb concentrations for VO₂ peak and VO₂-AT are associated with an increased risk of moderate or severe complications after major abdominal surgery (OR = 0.86 per 10 g/L increase, 95% CI = 0.77, 0.97, and OR = 0.86 per 10 g/L increase, 95% CI = 0.77, 0.96, respectively). This association does not seem to be influenced by poor preoperative functional capacity, indicating that anemia increases the risk of developing postoperative complications also through other mechanisms.

Integration of patient blood management with enhanced recovery after surgery programs

Several trials have consistently demonstrated that preoperative anemia is independently associated with higher morbidity, mortality, and allogenic blood transfusion rates. For these reasons, correcting preoperative anemia has been advocated by ERAS guidelines by national and worldwide health care programs, and by many national professional societies. However, trials investigating whether correcting preoperative anemia improves postoperative outcomes show contrasting results.

This might be due to the lack of PBM programs aiming at optimizing anemia and preventing excessive blood loss throughout the entire perioperative period, rather than focusing solely on the preoperative period. In fact, several reviews and expert-opinion suggest that PBM programs should be integrated within the ERAS pathways to ensure that anemia and transfusion management would be adequately ruled during the preoperative, intraoperative, and postoperative period. However, clinical trials evaluating the integration and the impact of PBM programs in the context of an ERAS program are currently lacking. PBM programs are multimodal pathways, patient-centered, with an interdisciplinary approach for patients undergoing major surgery. PBM is effective in reducing perioperative complications rate, maintaining patients own blood mass, thereby improving clinical outcomes and reducing costs. Despite all these proven benefits, there are many knowledge gaps about PBM in particular whether integrating PBM as an element of the ERAS programs can further potentiate the benefits of ERAS pathways, and at the same time facilitate the adoption of PBM programs. ERAS programs have been one of the most recent significant innovations with a meaningful impact on surgical practice. Just like PBM, ERAS provides an evidence-based multimodal, multidisciplinary approach to attenuate perioperative stress and organ dysfunction and decrease the rate of postoperative complications, thereby enhancing the recovery after surgery. Considering the existing lack of evidence supporting the integration of PBM with ERAS programs notwithstanding its strong physiologic rationale, The iCral study group is currently conducting a prospective observational multicenter study (iCral) to investigate whether integrating a PBM program within a colorectal ERAS pathway might improve outcomes (5000 patients are expected to be recruited). The results of this trial will inform future ERAS guideline developers on the role of PBM in the context of ERAS programs. If integrating PBM with the ERAS program will be proven beneficial, adequate institutional resources should be allocated to successfully implement clinical practice changes. Finally, implementation of PBM within an ERAS program might be a further opportunity to facilitate the uptake of ERAS programs, to redesign the perioperative pathway with evidence-based interventions, and to reduce unwanted clinical practice variability.

Statements

22. Specific prehabilitation programs should be developed to improve individual anemia tolerance. LoE 5; GoR C; consensus 100%.

23. PBM programs should be integrated within ERAS pathways. LoE 5; GoR C; consensus 100%.

Point-of-care testing and iatrogenic blood loss

Point-of-care testing

Major surgery is associated with a high risk of perioperative blood loss. In a setting of massive bleeding, the absence of real-time assessment of a patient’s capacity for coagulation and his evolving requirements for blood products can be a major issue, leading to empirical treatment and the potential for inappropriate administration of blood products. Standard laboratory tests, like prothrombin time and activated partial thromboplastin time, have generally too long turnaround times to be really useful when minutes count and fast decisions are needed. Moreover, they have never been validated for addressing the treatment of perioperative bleeding. Both the prothrombin time and activated partial thromboplastin time are designed as diagnostic tests to confirm the clinical suspicion of bleeding. This is different from their use as screening tests in otherwise healthy preoperative patients, where the prevalence of bleeding disorders is extremely low. Their use in populations with low pretest probability will invariably detect a high degree of normal results. The need for a rapid, comprehensive, physiological assessment of the entire process of coagulation, and the patient’s overall hemostatic capacity, has led to the development of “global hemostasis assays”; these include viscoelastic tests which allow for a rapid bedside analysis of patient’s in vivo hemostatic condition. Today, commercially available bedside viscoelastic tests provide the first results within 5 minutes. Although there is a lack of standardization and internationally validated algorithms, these tests are in widespread use in complex surgery, massive bleeding trauma, and postpartum hemorrhage. They have also been shown to be valid predictors of transfusion needs, to limit the use of blood component therapy and lead to improved patient outcomes in cardiac
surgery, liver transplantation, massive trauma, and postpartum hemorrhage. Several guidelines in different clinical scenarios recommend the implementation of point-of-care testing for the management of perioperative bleeding to guide blood component therapy and goal-directed hemostatic therapy.101,109,157-161

Statements
24. It is recommended to use point-of-care testing for guiding the blood component therapy and coagulation support. LoE 1a; GoR A; consensus 100%.
25. Monitoring of hemostasis during perioperative severe acquired bleeding should start early and be repeated. LoE 2a; GoR B; consensus 100%.
26. Each institution should have a local standardized algorithm for the management of coagulopathic bleeding. LoE 2a; GoR B; consensus 96.8%.

iatrogenic blood loss
Blood loss secondary to phlebotomy for laboratory testing can contribute to patient anemia or aggravate hospital-acquired anemia, which is associated with increased LOS and morbidity. Published data suggest that phlebotomy blood loss for a patient may exceed an average of 40 ml per day and a cumulative median volume of 454 ml in critical care units, contributing to a decline in Hb levels during hospitalization. A reduction in blood drawn can be obtained by lowering the number of sampling and using pediatric-size collection tubes, reducing the pre-analytical sample collection error (e.g., mislabeled, hemolyzed, clotted, and under- or over-filled tubes) that cause repeated sampling. Healthcare providers should order only those tests that are needed for clinical management. The need for laboratory testing should be reevaluated at least on a daily basis.109,158,165,166

Statements
27. Phlebotomy for unnecessary laboratory tests should be avoided. LoE 2a; GoR A; consensus 100%.
28. The use of microsampling by using pediatric tubes or low-volume full-sized tubes should be preferred. LoE 2b; GoR B; consensus 100%.
29. The use of closed-loop systems for arterial and central venous lines to reduce blood waste is recommended. LoE 2a; GoR A; consensus 100%.

Control of perioperative blood loss
The management of bleeding during the intraoperative period requires a multimodal and multidisciplinary approach, being part of the second and third pillars of PBM. Evidence from the literature shows that reducing perioperative blood loss improves patient outcomes and reduces healthcare costs.101 A close collaboration between anesthesiologists, surgeons, and transfusion service is of paramount importance to control perioperative bleeding and reduce RBCs transfusions during surgery.167

Permissive hypotension or deliberately induced hypotension
Permissive hypotension consists of using several techniques (patient positioning, central neuraxial anesthesia, intravenous anesthetics [propofol], opioids [remifentanil], directly acting vasodilators [nitroglycerin], selective beta-blockers [esmolol], selective alpha-blocker [dexametomidine], combined alpha- and beta-blocker [labetalol]) to lower intraoperative mean arterial blood pressure to values between 60 and 70 mm Hg to reduce blood flow to the surgical field. The aim is to reduce blood loss, improving visibility in the surgical field. This has to be balanced against the risks of organ hypoperfusion, such as delayed awakening, permanent cerebral damage, myocardial and kidney injury, and death. Therefore, this technique should be avoided in patients with coronary artery disease, poorly controlled hypotension, or cerebrovascular disease. Permissive hypotension can be achieved through a reduction in cardiac output, blood pressure, or a combination of these, depending on the method used.25,101,109,138,167-171

Statement #30: During hemorrhage, permissive hypotension or deliberately induced hypotension should be considered while balancing the risk of blood loss and preservation of vital organ perfusion. LoE 1b; GoR A; Consensus 100%.

Acute normovolemic hemodilution
Frequently used in the past, acute normovolemic hemodilution (ANH) is a blood conservation technique defined as removing whole blood from a patient after the induction of anesthesia and maintaining normovolemia using crystalloidal and/or colloidal replacement. The amount of blood removed depends on various factors such as baseline Hb concentration, expected blood loss, and hemodynamic stability. The use of ANH has been shown to reduce transfusion of allogeneic blood products.43,101,172-175

Statement #31: When substantial blood loss is anticipated, ANH should be considered. LoE 2a; GoR B, Consensus 100%.

Autologous cell salvage
Cell salvage is a method of recovering blood from the surgical field during the intraoperative or immediate postoperative phase, that is then reinfused to the patient. The National Institute for Health and Care Excellence recommends the use of cell salvage for procedures when a large volume of blood loss (e.g., >500ml) is anticipated.127 Infection and malignancy were traditionally considered contraindications to cell salvage, but there is increasing evidence to support its use also in these settings. With the use of a leukocyte depletion filter (40 μm), there is a 99% reduction in bacterial contamination in blood resuspended in normal saline. The potentially increased risks of bacterial contamination must be weighed against the increased risk of infection through immunomodulation secondary to allogeneic blood transfusion. Similarly, studies have not identified any association between the use of cell salvage and increased risk of metastasis during cancer surgery, and reinfused tumor cells do not have metastatic potential.101,109,176-180

Statements
32. In patients undergoing major digestive surgery with expected blood loss ≥ 500 ml, the use of washed cell salvage is not contraindicated provided that initial evacuation of soiled abdominal contents and additional cell washing are performed and that broad-spectrum antibiotics are used. LoE 1c; GoR A; Consensus 100%.
33. Cell salvage is not contraindicated in cancer surgery, provided that blood aspiration close to the tumor site is avoided and leukodepletion filters are used. LoE 2c; GoR B, Consensus 100%.

Use of antifibrinolytic agents
Antifibrinolytics, such as tranexamic acid (TXA), are synthetic lysine analogues that inhibit plasminogen activation and provide clot stabilization. TXA is widely used during surgery, but there are concerns about its potential thromboembolic effects. In the United Kingdom, TXA is recommended for all surgery where blood loss is expected to be greater than 500 ml.101,166,181 TXA for prophylaxis of excessive bleeding administered before and/or during a procedure is effective in reducing perioperative blood loss in many different types of noncardiac surgery (hepatobiliary, neurosurgical, and gynecological).180,182-185 A recent systematic review of the prophylactic use of intravenous TXA in noncardiac surgery on 191 RCTs and 40,621 patients found
no difference in the occurrence of composite cardiovascular thromboembolic events (any deep vein thrombosis, pulmonary embolism, myocardial ischemia/infarction or cerebral ischemia/infarction; risk ratio [RR] = 1.02; 95% CI = 0.94, 1.11; P = 0.65) whereas intravenous TXA was associated with a reduced RBCs transfusion rate compared with control (9.9% vs. 19.4%; RR = 0.46; 95% CI = 0.41, 0.51; P < 0.0001).

Desmopressin, a synthetic vasopressin analogue, was recently recommended by European guidelines\(^{160}\) for use in trauma patients on antplatelet therapy. In the perioperative setting, the first European Society of Anaesthesiology and Intensive Care guidelines\(^{161}\) suggested using desmopressin where there is demonstrable evidence of acquired platelet dysfunction secondary to drugs, uremia, or cardiopulmonary bypass, whereas in its second update desmopressin is suggested in high-risk uremic patients for reducing bleeding during invasive procedures and for managing acute bleeding.\(^{162}\) However, the evidence that desmopressin can reduce perioperative transfusion requirements and blood loss is weak. A recent systematic review\(^{167}\) of 65 trials with 3874 participants undergoing surgery (cardiac, orthopedic, plastic, and liver) found no overall benefit from desmopressin. Small reductions in blood loss and transfusion requirements were observed in patients undergoing cardiac surgery, though not clinically relevant. Many of the included trials were at high risk of bias. Terlipressin is another synthetic vasopressin analogue with relative specificity for the splanchnic circulation where it causes vasoconstriction with subsequent reduction of blood loss during abdominal surgeries. Two recent RCTs showed significant reductions in portal venous pressure, intraoperative blood loss, and the number of transfused RBCs units during liver surgery.\(^{34,109}\)

Normothermia

Intraoperative hypothermia, defined as a core body temperature below 36°C can result from many factors such as low operating theater temperatures, evaporation from body cavities, use of cold intravenous fluids and anesthetic gases, reduced metabolic activity, and loss of thermal regulation and responses owing to anesthesia (such as shivering). Patients at risk of developing hypothermia include those at extremes of age, undergoing combined regional and general anesthesia, major surgery, prolonged surgery, and with higher ASA class. The reversible adverse effects of hypothermia on platelet function and the coagulation cascade, as a result of impairment of temperature-dependent enzymatic reactions, are well-recognized.\(^{43,101,109,190-192}\)

Statement #36: Intraoperative hypothermia should be avoided with active warming. LoE 1 a; GoR A; consensus 100%.

Goal-directed hemodynamic therapy in patients undergoing high-risk noncardiac surgery

Perioperative hemodynamic management, through monitoring and intervention on physiological parameters to improve cardiac output and oxygen delivery (goal-directed therapy, GDT), may improve outcomes. There is not enough good-quality evidence to support the adoption of a GDT protocol to reduce mortality, although it may be useful in high-risk patients. Perioperative GDT protocol to guide fluid therapy and optimizing circulation is recommended to reduce morbidity. Dynamic assessment of fluid responsiveness and noninvasive measurement of cardiac output should be considered.\(^{101,109,191-196}\)

Statement #37: to preserve optimal cardiovascular stability, it is recommended to apply goal-directed hemodynamic therapy in patients undergoing high-risk noncardiac surgery. LoE 1b; GoR A; consensus 100%.

Use of point-of-care diagnostics

Viscoelastic hemostatic assays are increasingly used in the management of perioperative severe bleeding. The two most common assays are thromboelastography and rotational thromboelastometry. The main advantage of these assays is the quick turnaround time, with an assessment of all stages of clot formation available in a few minutes. Current guidelines recommend the use of these assays only in patients undergoing cardiac and liver surgery, where robust cost-effectiveness data exist to support their use. Unfortunately, available data are less robust in patients undergoing other major surgery (gastrointestinal, urological, and gynecological). The use of point-of-care diagnostics in this setting should be adopted depending on circumstances or personalized treatment of coagulopathy.\(^{43,101,109,197-203}\)

Statement #38: Viscoelastic hemostatic assay guidance is recommended for reducing allogeneic blood product transfusion in liver transplant (LoE 1a; GoR A) and hepato-pancreatic surgery (LoE 1c; GoR A); consensus 100%.

Restrictive hemoglobin thresholds for red blood cells transfusion

Blood is a scarce resource, and limiting its use aims at reducing complications related to RBCs transfusions, reducing pressure on transfusion services, and lowering direct transfusion costs to users, with a clear benefit for policymakers and hospital expenditures. Although the adoption of restrictive Hb thresholds for RBCs transfusion is increasingly used, the effect of a restrictive transfusion strategy on morbidity and mortality is still unclear. Instead, it seems clear that a liberal transfusion policy does not improve clinical outcomes, so many guidelines recommend then adopting a more restrictive approach as the standard of care. The restrictive transfusion policy uses a threshold for RBCs transfusion between 70 and 80 g/l, and the liberal transfusion policy of 90 to 100 g/l. In any case, current guidelines suggest to always follow clinical criteria for the transfusion threshold.\(^{1,2,12,25,41,101,204-206}\)

Statement #39: Monitoring Hb concentration for anemia detection is recommended during surgery at high risk of bleeding. The adoption of restrictive Hb thresholds for RBCs transfusion is beneficial in reducing exposure to allogeneic blood products. LoE 1a; GoR A; consensus 100%.

Minimally invasive surgery

Minimally invasive surgery (MIS), both laparoscopic and robotic used across different surgical specialties, relies on smaller incisions, reduces tissue manipulation and guarantees a more accurate tissue dissection by magnifying the operative field and anatomical structures, thus limiting surgical trauma. In a recent RCT\(^{207}\) comparing the clinical outcomes of open versus laparo-thoracoscopic esophagectomy, the latter approach resulted in a significant lower intraoperative blood loss. In gastrointestinal surgery, the laparoscopic approach has been shown to be efficient in reducing intraoperative blood loss when compared with open surgery.\(^{208}\) Robotic surgery applied to gastric cancer in different stages has confirmed the ability of MIS\(^{208,209}\) to
reduce intraoperative blood loss. These results have been confirmed and consolidated over time also in colorectal surgery210,211 regardless of MIS approach chosen and in pancreatic surgery.132 In all these reports though, the ability to reduce the number of blood transfusions is either not reported or not reached.

In hepatic surgery, intraoperative blood loss is usually significant in comparison to visceral surgery, and perioperative blood transfusions are associated with worst outcomes.213,214 Different intraoperative strategies for blood sparing have been investigated and addressed in consensus statements.215 Minimally invasive liver surgery is not part of these statements, but in different studies and in a recent guideline document it is considered a reliable technique to limit intraoperative blood loss216,217 if compared with open surgery.

Statement #40: To limit intraoperative blood loss, minimally invasive surgery techniques (laparoscopic and robotic), if indicated, should be preferred when scheduling surgery. LoE 2a; GoR A; consensus 100%.

Topical hemostatic agents

Topical agents, including fibrin sealants, fibrinogen and thrombin gelatin—thrombin matrices, and oxidized cellulose, may be applied to bleeding tissues during surgery as a hemostatic or sealing adjunct. Despite various studies across different surgical specialties and settings,218–221 there is only weak evidence of any clinically relevant advantage in reducing intraoperative blood loss during major gastrointestinal surgery. The main evidence supporting their role in reducing the risk of exposure to allo- generic RBCs transfusions arises from studies in orthopedic surgery. In gastrointestinal surgery, especially in liver surgery, these hemostatic agents tend to reduce the time to achieve hemostasis219 when compared with standard of care. This effect, though, is not associated with a decrease in the number of postoperative blood transfusions. Among the multiple products currently available, (oxidized cellulose, collagen or gelatin-based products, and fibrin-based glues or patches), no specific agent has been demonstrated to be superior to others in achieving hemostasis.218 Taking all these elements and the low-quality evidence supporting their use into account, topical hemostatic agents should be considered an adjunct measure to standard surgical hemostasis techniques.222,223

Statement #41: Liberal use of topical hemostatic agents in major digestive surgery is not supported by sufficient evidence. Their use should be limited to cases where standard surgical hemostasis is not reached. LoE 3a; GoR B; consensus 100%.

Measurement of intraoperative blood loss

Intraoperative blood loss is estimated routinely in the operating room.224 Through these calculations, transfusions and patient treatment decisions are made. Different methods have been established: visual estimation, gravimetric, direct measurement of intraoperative Hb concentration, mathematical formulas (Nader’s, Moore’s and ICHS formulas); colorimetric, and intraoperative esophageal doppler monitoring. Visual estimation is the worldwide prevailing technique due to its ease of use, but it is the least reliable technique to assess blood loss during surgery as it relies only on the ability of operating theater personnel to record blood loss in surgical sponges, suction containers, surgical clothes, and on the floor, without using additional equipment. This method, though, relies on individual interpretation alone and is highly inaccurate,225 leading to over- or underestimation of blood loss. Mathematical formulas tend to overestimate blood loss. Gravimetric models do not take into account dilution. Colorimetric evaluation of surgical sponges and suction containers by digital mobile devices and a dedicated software has a higher degree of correlation with reference blood volume compared with other methods, but does some limitations due to costs and current limited availability in the operating room.226 The other methods of estimating blood loss mentioned above have been investigated, but cannot be considered valid techniques. According to current literature, therefore, no statement can be made regarding the estimation of intraoperative blood loss.

Management of postoperative anemia

Postoperative anemia is present in up to 90% of patients submitted to major surgery.51 The main recognized causes are preoperative anemia, perioperative blood loss, frequent blood sampling for laboratory tests, and increased hepcidin levels due to the inflammatory response to surgery. These effects can last for a few weeks after major surgery and aggravate postoperative IDA. The immediate and most widely used treatment for postoperative anemia is RBCs transfusion, which carries several transfusion-related reactions, produces the fastest but only transient correction of the anemia and does not represent the etiological treatment of IDA. RBCs transfusions are responsible of an increased burden on the health care system.5 However, limited evidence on postoperative anemia management is currently available, indicating that, despite its high prevalence with negative impact on clinical and long-term outcomes, little attention has been given to this topic. Therefore, a sheaf and shared protocol on postoperative anemia management is strongly needed to minimize its impact on clinical outcomes and to permit a faster recover to the patient.

In most cases of uncomplicated recovery from major surgery, a nadir in Hb concentration can be observed within the first 3 to 4 days after surgery.51 To minimize iatrogenic blood loss, blood tests should not be performed on a daily basis if not required by complicated clinical conditions. A base level (e.g., immediately before surgery or eventually on the first postoperative day) of iron status should be obtained, particularly when preoperative values are not available, although measuring of ID in the postoperative period is more difficult, as ferritin levels may be elevated as part of the acute-phase inflammatory response after surgery.227 Although a recent RCT failed to show any benefit on postoperative outcomes,42,228 the management of postoperative anemia should continue a concept already started in the preoperative phase: a recent large prospective observational multicenter cohort study in Australia229 actually showed a significant reduction of postoperative RBCs transfusions in patients screened and treated for preoperative anemia. To reduce the postoperative RBCs transfusion rate, therefore, postoperative optimization of Hb concentration should be focused on the correction of ID through the intravenous administration of concentrated iron preparations, Two RCTs comparing single-dose (1000 mg) intravenous FCM infusion versus standard care or multiple fractionated doses of intravenous iron sucrose (IS) in the treatment of postoperative anemia after major abdominal surgery230,231 showed that FCM determines a fivefold reduction of postoperative RBCs transfusion rates, being as effective as IS, but with reduced rates of infection. The use of ESAs in this setting deserves further investigation.232 An international consensus statement on postoperative anemia recently provided a flowchart (Figure 7) to guide the use of intravenous iron and/or RBCs transfusion with or without ESA in this context.231 If operative blood loss is at least 500 mL or surgery lasts for >2 hours, Hb and iron status should be screened and anemia classified into mild, moderate, or severe using 80 and 110 g/L as cutoffs. Blood transfusion is required only for severe symptomatic anemia, whereas intravenous iron is suggested for moderate to severe anemia and for mild anemia with ID.

Statements

42. Hb concentration should be measured, based on the type of surgery, on postoperative day 1 and day 4, or as needed depending on the postoperative course. LoE 3b; GoR B; consensus 100%.
43. Iron status should be obtained immediately before surgery or on the first postoperative day if not available in the preoperative phase (in this case taking into account mainly a transferrin saturation <20% because of ferritin elevation due to surgery inflammation. LoE 3b; GoR B; consensus 97.0%.

44. When blood loss exceeds 500 ml or surgery lasts >2 hours Hb concentration and iron status should be screened and anemia classified into mild, moderate, or severe using 80 and 110 g/l as cutoffs. Blood transfusion is required only for severe symptomatic anemia, whereas single high-dose intravenous iron is suggested for moderate to severe anemia and for mild anemia with ID. LoE 2a; GoR A; consensus 100%.

45. Pharmacological interventions should be preferred to RBCs transfusion for the correction of postoperative anemia in hemodynamically stable patients. LoE 2b; GoR A; consensus 100%.

46. The use of ESAs in the postoperative period requires further investigation, but needs consideration mainly in patients with severe anemia and inflammation-induced blunted erythropoiesis and for those declining blood transfusion. LoE 2b; GoR B; consensus 100%.

Transfusion thresholds and “one unit at a time” transfusion policy

Transfusion thresholds
Both anemia and RBCs transfusion are associated with organ injury and increased morbidity and mortality across a wide span of disease states and surgical interventions. However, despite well-recognized risks, RBCs transfusion is a life-saving therapy in several circumstances, as in massive bleeding and in hematological diseases with a chronic impairment of hematopoiesis, just to name a few. For these reasons, the minimum RBC dose should be administered to ensure an adequate oxygen delivery to the tissues at the same time balancing the above-mentioned harms. In two studies involving a total of 593 patients for whom blood was not an option, there was a clear risk of postoperative death when the Hb fell below 70 g/l.

A retrospective review of a large database of veterans >65 years undergoing noncardiac surgery led to the evidence that preoperative hematocrit inversely correlates to the rate of mortality or cardiac events, doubling the risk in the range of hematocrit 18.0 to 20.9. However, is not clear if a more aggressive correction of anemia improves outcomes. Moreover, in a long-term perspective, a restrictive approach in transfusion therapy doesn’t appear to increase major complications related to anemia after discharge. On the other hand, after the 10/30 rule was questioned in 1988 and on the thrust of human immunodeficiency virus epidemics, in the next decades several studies were performed with aim to assess the optimal transfusion thresholds in different medical and surgical settings. Despite the clear evidence that a transfusion threshold of Hb 70–80 g/l is safe for most patients through different clinical scenarios, many factors have to be taken into account in deciding to transfuse other than a specified Hb value (e.g., signs and symptoms of anemia, patient’s comorbidities, risk of acute short-term bleeding, presence of correctable iron and/or hematonic deficiencies and patient’s wishes).

Statements

47. After an accurate clinical assessment, in hemodynamically stable patients a restrictive transfusion strategy (Hb threshold from 70 to 80 g/l) rather than a liberal one should be applied. LoE 1a; GoR A; consensus 100%.

48. In asymptomatic subjects with iron or hematonic deficiency, only a single value of Hb level as a trigger for transfusion should be avoided. The decision has to be based on a judicious risks-benefits assessment. LoE 2a; GoR B; consensus 100%.

“One unit at a time” transfusion policy

Transfusion-Associated Cardiac Overload (TACO) is the main cause of death due to transfusion therapy, with a global estimated incidence of about 1 out of 100 transfusion episodes. Identified risk factors are history of heart failure, renal dysfunction (acute and chronic), and age >70–80 years in
Table 8.
Indicators for the audit of PBM activities.

<table>
<thead>
<tr>
<th>Action</th>
<th>Indicators</th>
<th>Rationale</th>
<th>References</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron therapy before and after surgery in the presence of iron deficiency anemia</td>
<td>Patients with iron correction in preoperative phase/total patients with iron deficiency anemia undergoing surgery (process indicator—organizational) patients receiving iron in postsurgical phase/total patients with iron deficiency anemia undergoing surgery (organizational process indicator) Patient with preintervention values Hb≥130 g/l/total Patient operated (stratified by type of intervention or global) (result—performance)</td>
<td>Iron deficiency anemia correction with iron preparations instead of transfusion is a gold standard in good clinical practice</td>
<td>41, 50, 60, 136, 258</td>
<td>Verify application of the practice (Existence of the pathway and use by operators)</td>
</tr>
<tr>
<td>Iron deficiency anemia correction</td>
<td>Hb at the first visit (initial situation), preoperative Hb (after correction), Hb at postoperative days 3 to 5 (performance of administration protocols) No. of patients receiving tranexamic acid/ No. of candidates to surgery with expected blood loss >500 ml No. of hemorrhagic risk assessment questionnaires No. of candidates to surgery with expected blood loss >500 ml</td>
<td>Well-practiced correction of anemia allows a certain degree of recovery of Hb values</td>
<td>232</td>
<td>Check the correctness of preparation protocols with iron-based preparations</td>
</tr>
<tr>
<td>Tranexamic acid administration before surgery</td>
<td>Adhesion to CNS regulatory reference indications 12, 259 Verify the application of the practice (Uniformity of behavior by operators) Verify the application of the practice (Training of operators on the modalities of medical history)</td>
<td>Tranexamic acid administration has a recommendation level 1a in all fields of surgery</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Preoperative hemorrhagic risk assessment</td>
<td>Adhesion to CNS regulatory reference indications 12, 259 Verify the application of the practice (Uniformity of behavior by operators) Verify the application of the practice (Training of operators on the modalities of medical history)</td>
<td>Adhesion to CNS regulatory reference indications 12, 259 Verify the application of the practice (Uniformity of behavior by operators) Verify the application of the practice (Training of operators on the modalities of medical history)</td>
<td>12, 259</td>
<td></td>
</tr>
<tr>
<td>Preservation of the patient's blood</td>
<td>Procedure for intraoperative cell salvage Procedure for critical bleeding/massive transfusion Calculation of intraoperative blood loss: preintervention blood volume; preoperative Hb; postoperative Hb Clinical reevaluation (Hb values) after each single RBCs transfused unit in hemodynamically stable, nonactively bleeding patients No. of patients with post-transfusion Hb ≥90 g/l/total No. of transfused patients</td>
<td>Adhesion to CNS regulatory reference indications 12, 28 Standardization of EMC usage modes in potentially high-risk clinical situations Check the effectiveness of the blood storage procedure in maintaining blood mass Only unit at a time transfusion policy</td>
<td>12, 136, 264, 265</td>
<td>Assessing the degree of development of PBM program activities Performance monitoring Verify the application of the practice (Uniformity of behavior by operators and training on transfusion indications)</td>
</tr>
<tr>
<td>Appropriateness of RBCs transfusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
addition, other factors can be implicated, such as pretransfusion diuretic use, hypertension, recent and urgent surgery, and plasma transfusion.248

With the aim to minimize this life-threatening complication, the Association for Advancement in Blood & Biotherapies and the Canadian Society of Blood Transfusion have promoted the “Choosing Wisely” campaign “Don’t transfuse more than one red cell unit at a time when transfusion is required in stable, nonbleeding patients.” Moreover, this measure should be part of the strategies for mitigating the risk of TACO.249 At the same time, at a national level several countries adopted the so-called “one-unit” or “single-unit policy,” which consist in transfusing one unit at a time followed by a patient’s revaluation, provided hemodynamic stability. In Italy, a similar campaign was promoted by the CNS with the slogan “one transfusion, one independent clinical decision.” Moreover, besides the lowering of risk of TACO, several studies proved that the above-mentioned policy can lead to a reduction in transfused RBCs units as a result of patient’s symptoms relief and/or the overcoming of a preset Hb target after transfusion of one unit of blood. A retrospective study in a population of patients receiving two units of RBCs250 estimated the chance of reaching the Hb target of 70, 80, and 90 g/l with one RBC unit: the target was reached in 42.0%, 79.6%, and 98.0% of cases, respectively. This corresponded to 0.21, 0.5, and 0.82 mean RBCs units saved per patient. Heyes et al251 evaluated the before-after impact of implementation of the National Institute for Health and Care Excellence guideline137 on blood transfusion in symptomatic nonbleeding patients. In comparison with the 6 months before the implementation, in the next 6 months a 50% reduction of transfused RBCs was achieved. Moreover, the new policy led to a decrease of two-units transfusion episodes from 6.5% to 43% with a cost saving of £28,670 and without any effect on patients’ length of stay. The enforcement of a single-unit policy for RBCs transfusion proved to be more effective than compliance with evidence-based transfusion thresholds in reducing RBCs utilization.252 However, although the implementation of a one-unit policy is recommended in more than 90% of current guidelines, a clear recommendation about multiple or single-unit transfusion is present in less than 30% of them.253

In an observational cohort study performed at two hospitals headed by Mayo Clinic in 2019,247 the authors assessed the results of the introduction of a “one unit as default” request in 42.0%, 79.6%, and 98.0% of cases, respectively. This corresponded to 0.21, 0.5, and 0.82 mean RBCs units saved per patient. Heyes et al251 evaluated the before-after impact of implementation of the National Institute for Health and Care Excellence guideline137 on blood transfusion in symptomatic nonbleeding patients. In comparison with the 6 months before the implementation, in the next 6 months a 50% reduction of transfused RBCs was achieved. Moreover, the new policy led to a decrease of two-units transfusion episodes from 6.5% to 43% with a cost saving of £28,670 and without any effect on patients’ length of stay. The enforcement of a single-unit policy for RBCs transfusion proved to be more effective than compliance with evidence-based transfusion thresholds in reducing RBCs utilization.252 However, although the implementation of a one-unit policy is recommended in more than 90% of current guidelines, a clear recommendation about multiple or single-unit transfusion is present in less than 30% of them.253

In an observational cohort study performed at two hospitals headed by Mayo Clinic in 2019,247 the authors assessed the results of the introduction of a “one unit as default” request in the computerized physician order entry for nonurgent RBCs. Compared with the previous biennium, RBCs unit transfused per patient lowered from 3.7 to 3.4 (P = 0.003) and patients with a post-transfusion Hb ≥100 g/l fell from 17.1% to 11.2% (P < 0.001). Overall, estimated activity-based RBCs transfusion expenditures decreased by 15.5%. To date, only two randomized studies have been recently made on this topic. The first one was carried out in women with hemodynamically stable postpartum anemia254; patients transfused with one RBC unit avoided a second unit in 81.8% of cases, despite lower Hb levels at discharge. In a second large prospective noninferiority study,255 patients requiring intensive chemotherapy or undergoing bone marrow transplantation were randomized to receive one or two RBC units with a transfusion Hb threshold of 80 g/l: no differences were seen between the two groups concerning the percentage of patients experiencing nonhematological adverse event grade ≥3 or intensive care admission or death (composite outcome). In this case, the “restrictive” policy did not have any impact on the number of RBCs units transfused per hospital admission. However, in a retrospective cohort study performed in a similar setting,256 the implementation of the single-unit policy led to a reduction of RBCs use of about a quarter, corresponding to 2.7 RBCs units per treatment cycle. The same results were obtained in a more recent study where no significant differences in length of stay or 30-day mortality rates were observed.257

In summary, in patients without hemodynamic instability and/or ongoing bleeding, the implementation of a single-unit policy seems to be a simple and safe measure for reducing the risk of TACO. Moreover, this approach can minimize the global amount of transfused RBCs.

Statement #49: A single unit of RBCs should be the standard dose for hemodynamically stable patients who are not actively bleeding, LoE 2 b; GoR B; consensus 100%.

Patient blood management audit and reporting

Regular monitoring and evaluation of data accounts basis for continuous improvement and achievement of the established standards. To promote the implementation of PBM, the periodic reporting on the initiatives put into practice is a useful tool for analysis and correction. To define the indicators for the monitoring of PBM, it was devised as a process divided into three macroareas, known as the three pillars, with an input element (the patient) and output elements (the expected results). These are identified by the greatest scientific evidence available at the moment (e.g., reduction of RBCs transfusions, reduction of mortality, reduction of length of stay, reduction of costs) and can be considered as indicators/outcome indicators.

The use of these indicators is intended to consolidate what is already reported in the literature and compare different experiences and healthcare realities for benchmarking. The process indicators have been chosen in reference to the possibility to estimate the degree of application of the consolidated and specific indications for the three macrophases of which the PBM is composed, choosing the activities universally recognized as determining in the realization of specific pillars: (1) application of pharmacological correction pathways of anemia; (2) prevention of intraoperative bleeding; and (3) single-unit transfusion application and restrictive blood transfusion policies (Table 8).
Table 10. Summary of consensus statements reaching a grade of recommendation “A.”

<table>
<thead>
<tr>
<th>No.</th>
<th>Statements</th>
<th>LoE</th>
<th>GoR</th>
<th>Consensus (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>The strategy for PBM implementation should include the design of a diagnostic and therapeutic care pathway (DTCP), that should be representative of the considered hospital reality and must outline a flow chart with all the nodal points of the program. A dedicated outpatient anemia clinic for the multidisciplinary diagnosis and correction of preoperative anemia in elective surgical patients is a fundamental point of the pathway. An illustrative brochure describing the entire PBM pathway and its significance should be provided to the patient. A patient’s satisfaction questionnaire with defined scoring system should be used for the identification of the critical points of the pathway. A multidisciplinary group and a permanent training system should be created for audit and improvement of the pathway.</td>
<td>2</td>
<td>A</td>
<td>97.4</td>
</tr>
<tr>
<td>2</td>
<td>The high prevalence of preoperative anemia and its association with worse clinical outcomes justify screening for anemia before surgery of all patients. All patients with anemia should be evaluated for the cause of anemia.</td>
<td>1</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>It is important to identify iron deficiency (ID), including in patients with anemia of inflammation (or anemia of chronic disease). Evaluation for ID should include iron status (serum iron, total iron binding capacity, transferrin saturation index [TfS]) and ferritin.</td>
<td>1</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>The management of preoperative anemia should be performed early (2–4 weeks before major digestive surgery) enough to improve Hb concentration which may decrease perioperative RBC transfusion requirement.</td>
<td>2</td>
<td>A</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>Iron therapy should be administered as a treatment for IDA before major digestive surgery. Intravenous iron is preferable to oral iron, possibly through single high-dose administration. Caution should be taken in patients with IBD.</td>
<td>2</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>12</td>
<td>In case of minor gastrointestinal surgery or other procedures in which bleeding can be easily controlled, discontinuing anticoagulant therapy is not recommended.</td>
<td>1</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>13</td>
<td>In patients treated with DOACs undergoing low bleeding risk surgery, it is recommended that procedure is performed at through level (12–24 hours after last drug intake).</td>
<td>1</td>
<td>b</td>
<td>A</td>
</tr>
<tr>
<td>Intraoperative phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>It is recommended to use point-of-care testing for guiding the blood component therapy and coagulation support.</td>
<td>1</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>27</td>
<td>Phlebotomy for unnecessary laboratory tests should be avoided.</td>
<td>2</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>29</td>
<td>The use of closed-loop systems for arterial and central venous lines to reduce blood waste is recommended.</td>
<td>2</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>30</td>
<td>During hemorrhage, permissive hypotension or deliberately induced hypotension should be considered while balancing the risk of blood loss and preservation of vital organ perfusion.</td>
<td>1</td>
<td>b</td>
<td>A</td>
</tr>
<tr>
<td>32</td>
<td>In patients undergoing major digestive surgery with expected blood loss ≥500 ml, use of washed cell salvage is not contraindicated provided that initial evacuation of soiled abdominal contents and additional cell washing are performed and that broad-spectrum antibiotics are used.</td>
<td>1</td>
<td>c</td>
<td>A</td>
</tr>
<tr>
<td>34</td>
<td>When substantial (e.g., ≥500 ml) blood loss is anticipated or encountered, or the patient is involved in trauma or postpartum hemorrhage, or patient undergoing noncardiac surgery and experiencing major bleeding, intravenous administration of antifibrinolytics (tranexamic acid) should be immediately considered.</td>
<td>1</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>36</td>
<td>When patients are recovering from anemia, other physiologic parameters should be addressed to reduce oxygen requirements. Hypothermia should be avoided with active warming.</td>
<td>1</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>38</td>
<td>To preserve optimal cardiovascular stability, it is recommended to apply goal-directed hemodynamic therapy in patients undergoing high-risk noncardiac surgery.</td>
<td>1</td>
<td>b</td>
<td>A</td>
</tr>
<tr>
<td>39</td>
<td>Viscoelastic hemostatic assay guidance is recommended for reducing allogeneic blood product transfusion in liver transplant and hepatopancreatic surgery.</td>
<td>1</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>47</td>
<td>After an accurate clinical assessment, in hemodynamically stable patients a restrictive transfusion strategy (Hb threshold from 70 to 80 g/l) rather than a liberal one should be applied.</td>
<td>1</td>
<td>a</td>
<td>A</td>
</tr>
</tbody>
</table>

GoR indicates grade of recommendation; LoE, level of evidence.
<table>
<thead>
<tr>
<th>No.</th>
<th>Statement</th>
<th>LoE</th>
<th>GoR</th>
<th>Consensus (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preoperative phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Patients with ID anemia should be evaluated for the cause of the ID, whereas patients with anemia and normal iron status should be evaluated for coexisting causes of anemia (e.g., renal disease, primary hemolytic disease, and nutrition deficiency). The most important criteria for defining absolute ID are ferritin <30 ng/ml and/or TSAT <20%; ferritin <100 ng/ml may define ID in inflammatory states. If available, either a reticulocyte Hb <29 pg or a serum hepcidin level <20 µg/l also suggest the presence of ID in inflammatory states.</td>
<td>2 b</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>7</td>
<td>Erythropoiesis-stimulating agents (ESAs) should be administered in association with intravenous iron as a treatment for IDA before major digestive surgery when iron therapy alone is ineffective, time to surgery is short, DA is associated with chronic inflammation or anemia is directly related to inflammation.</td>
<td>2 b</td>
<td>B</td>
<td>97.2</td>
</tr>
<tr>
<td>8</td>
<td>Antithrombotic therapy with aspirin should be discontinued 5–7 days before surgery, when prescribed for primary prevention. In patients with previous percutaneous coronary intervention it is recommended to continue aspirin perioperatively if bleeding risk is low. In patients treated with P2Y12 inhibitors, who need to undergo elective surgery, postponing surgery for at least 5 days after cessation of ticagrelor and clopidogrel (time from last drug intake to intervention)—and for 7 days in the case of prasugrel—if clinically feasible, should be considered unless the patient is at a high risk of an ischemic event. Surgery should be performed in hospitals equipped with a 24/7 interventional cardiology unit</td>
<td>2 b</td>
<td>B</td>
<td>93.5</td>
</tr>
<tr>
<td>10</td>
<td>When a patient in DOACs therapy requires major gastrointestinal surgery, evaluation of coagulation tests, renal and hepatic function are recommended. Interruption of DOACs administration should be based on drug compound, renal function and bleeding risk.</td>
<td>2 a</td>
<td>B</td>
<td>96.8</td>
</tr>
<tr>
<td>14</td>
<td>Planned invasive surgical interventions at high risk of bleeding require temporary discontinuation of DOACs: the interruption regimen should consider DOAC compound, renal function and bleeding risk.</td>
<td>2 a</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>15</td>
<td>In an urgent surgery setting, coagulation tests and assessment of DOACs plasma levels should be considered.</td>
<td>2 b</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>16</td>
<td>In patients treated with DOACs undergoing gastrointestinal urgent surgery at high risk of bleeding, it is recommended that DOACs therapy is immediately interrupted.</td>
<td>2 a</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>17</td>
<td>Idarucizumab (in patients on dabigatran), prothrombin complex concentrate (PCC) or activated PCC (when specific reversal agents are not available) should be considered in patients undergoing urgent, high-risk surgery.</td>
<td>3 a</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>18</td>
<td>Use of low-dose DOACs to reduce bleeding risk is not recommended.</td>
<td>2 a</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>19</td>
<td>Vitamin K antagonists (VKAs) therapy should not be interrupted in patients undergoing low bleeding risk procedures such as gastroscopy, colonoscopy also with biopsy (but not polypectomy).</td>
<td>2 a</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>20</td>
<td>In patients with mechanical prosthetic valves, atrial fibrillation, prophylaxis of thromboembolism and high thrombotic risk needing major surgery and INR <1.5, we recommend suspension of VKAs therapy 5 days before surgery and a bridging therapy with LMWH or UFH.</td>
<td>2 a</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>21</td>
<td>When VKAs are interrupted before surgery, the anticoagulant therapy should restart 12–24 hours after invasive procedure, if the bleeding is well controlled. In the case of bridging therapy, LMWH or UFH should be started with VKA 24 hours after surgery, if bleeding is well controlled. Heparin therapy should be discontinued once the INR range has been reached.</td>
<td>2 a</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>25</td>
<td>Monitoring of hemostasis during postoperative severe acquired bleeding should start early and be repeated.</td>
<td>2 a</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>26</td>
<td>Each institution should have a local standardized algorithm for the management of coagulopathic bleeding.</td>
<td>2 a</td>
<td>B</td>
<td>96.8</td>
</tr>
<tr>
<td>28</td>
<td>When substantial blood loss is anticipated, acute normovolemic hemodilution should be considered.</td>
<td>2 a</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>31</td>
<td>Cell salvage is not contraindicated in cancer surgery, provided that blood aspiration close to the tumor site is avoided and leukodepletion filters are used.</td>
<td>2 a</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>35</td>
<td>Together with other measures, tranfusioin infusion may be considered during hepatic surgery to reduce bleeding.</td>
<td>2 a</td>
<td>B</td>
<td>96.8</td>
</tr>
<tr>
<td>41</td>
<td>Liberal use of topical hemostatic agents in major digestive surgery is not supported by sufficient evidence. Their use should be limited to cases where standard surgical hemostasis is not reached.</td>
<td>3 a</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>42</td>
<td>Hb concentration should be measured, based on the type of surgery, on postoperative day 1 and day 4, or as needed depending on the postoperative course.</td>
<td>3 b</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>43</td>
<td>Iron status should be obtained immediately before surgery or on the first postoperative day if not available in the preoperative phase (in this case taking into account mainly a transferrin saturation <20% because of ferritin elevation due to surgery inflammation).</td>
<td>3 b</td>
<td>B</td>
<td>97.0</td>
</tr>
<tr>
<td>46</td>
<td>The use of ESAs in the postoperative period requires further investigation, but needs consideration mainly in patients with severe anemia and inflammation-induced blunted erythropoiesis and for those declining blood transfusion.</td>
<td>2 b</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>48</td>
<td>In asymptomatic subjects with iron or hematocrit deficiency, only a single value of hemoglobin level as a trigger for transfusion should be avoided. The decision has to be based on a judicious risks-benefits assessment.</td>
<td>2 a</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>49</td>
<td>Single unit of RBCs should be the standard dose for hemodynamically stable patients who are not actively bleeding.</td>
<td>2 b</td>
<td>B</td>
<td>100.0</td>
</tr>
<tr>
<td>50</td>
<td>Audit and reporting are of paramount importance for continuous improvement of the PBM pathway. The indicators suggested by the European Commission should be used for this purpose.</td>
<td>2 b</td>
<td>B</td>
<td>100.0</td>
</tr>
</tbody>
</table>

GoR indicates grade of recommendation; LoE, level of evidence.
These basic requirements for the achievement of the results proposed by the PBM can be integrated by elements to assess the maturity of the program, related to the presence of procedures related to patient’s blood storage strategies, as suggested by the European commission19 in 2017 (Table 9).

Statement #50: Audit and reporting are of paramount importance for the continuous improvement of the PBM pathway. The indicators suggested by the European commission should be used for this purpose. LoE 2 b; GoR B; consensus 100%.

Discussion

Despite the worldwide recognition of the value of PBM and previous regulatory initiatives by the Italian government, the NBC11,12 and national scientific societies,4 the initial multidisciplinary survey leading to this consensus conference (Table 2) clearly demonstrates that there still is a long way to go towards widespread PBM adoption to become the “standard of care” in Italy. As an example, roughly one out of two respondents declared not to have an approved PBM protocol or preoperative screening and correction of anemia in his hospital. Actually, the results of the present survey differ very little from those recorded in a previous national survey in 201813 and those recorded in a recent survey of hospitals in England.260

Although almost two decades have passed since the first PBM definition, the WHO recently recalled attention to the need for its urgent implementation,1 but comprehensive PBM implementation is challenging because it encompasses patients with a wide range of clinical conditions undergoing many different procedures and therapies and involves many clinical settings and many types of health care professionals. Therefore, four major Italian scientific societies representing general surgeons, anesthesiologists, and transfusion medicine specialists decided to organize a consensus conference based on the results of the initial multidisciplinary survey. The first finding of this initiative is that high-quality studies to support LoEs allowing strong (GoR “A”) recommendations were present in 42% of the statements (21 out of 50, Table 10). Apparently, little has changed since the much larger International Consensus Conference (ICC) on PBM held in Frankfurt in 2018,43 that focused on 17 PICO questions and developed 10 out of 22 (45%) clinical recommendations. Nonetheless, this is the first initiative in the field of major digestive surgery in Italy, reaching a noteworthy level of consensus (100% in 43 out of 50 statements), and several of these statements differ from those of the previous ICC.43 The panel identified and strongly recommended a structured pathway for PBM implementation through the design of a DTCP depicting all the nodal points of the program, including a dedicated outpatient anemia clinic, an informative patient’s brochure, a patient’s satisfaction questionnaire, and the creation of a multidisciplinary group with a related permanent training system. At the same time, while confirming that preoperative anemia is an important risk factor for perioperative mortality and morbidity and that all anemic surgical candidates should be screened and treated with sufficient time (at least 2 to 4 weeks) before major elective surgery to ensure a clinical response, the panel also recommended practical algorithms for this purpose (Figures 2–4). The lack of agreement on the definition of Hb level for the diagnosis of preoperative anemia13 was not regarded as an issue by the present panel (Table 2): although the WHO definition of anemia (Hb level less than 130 g/l in males and less than 120 g/l in females) was derived in the 1960s from very small and low-quality studies,261–263 adoption of a 130 g/dl threshold in both sexes could be a reasonable alternative,264–266 shifting the attention to the strong necessity to perform preoperative anemia screening and treatment in all comers. Notwithstanding the availability of updated guidelines concerning the continuation or suspension of antiplatelet and anticoagulant therapies during the perioperati-ve period aimed at reaching an optimal balance between the hemorrhagic and thrombotic risks,100,103,107,109,111,120 the panel found most of the available evidence not sufficient to reach GoR “A” statements (Table 11). Surprisingly, the panel found no studies supporting prehabilitation programs to enhance individual tolerance to perioperative anemia and embriation of PBM into ERAS programs; however, the panel suggested both statements as expert recommendations (Table 12). Concerning the intraoperative phase, while approving and recognizing the relevance of POC testing, cell salvage, permissive hypotension, prevention of hypothermia, and goal-directed hemodynamic therapy, the panel stressed the need for widespread adoption of i.v. administration of antifibrinolytics (TXA) and minimally invasive surgery (either laparoscopic or robotic) whenever possible. Treatment of postoperative anemia, although present in nearly 90% of cases, is one of the most neglected aspects of PBM, with RBCs transfusion being the most common therapeutic answer. The panel suggested a practical algorithm (Figure 7) derived from a previous international consensus initiative,231 stressing Hb levels and iron status screening at postoperative days 1 and 4, classifying anemia using 80 and 110 g/l as cutoffs, with single high-dose intravenous iron for moderate to severe anemia in hemodynamically stable patients and for mild IDA, reserving RBCs for severe symptomatic anemia.

Finally, while underlining the importance of individual patient clinical assessment and confirming that the RBCs transfusion decision-making should not rely on a single Hb concentration measurement, the panel confirmed strong support for restrictive transfusion thresholds (Hb levels from 70 to 80 g/l) in hemodynamically stable patients. The panel recognized that further studies are needed to provide better evidence regarding the effect of PBM on clinical outcomes, blood utilization, and healthcare costs.

Conclusions

This multidisciplinary consensus conference led to the approval of 21 grade “A” recommendations by the panel, constituting the backbone of the PBM pathway in major digestive surgery. Further clinical research is needed concerning the other grade “B” statements and the embriation of PBM with specific prehabilitation and ERAS programs, into the development of an extended bundle of best practice in perioperative care. While waiting for these studies, it is of paramount importance to translate current strong recommendations into day-to-day clinical practice and encourage their use.
References

91. Qvist N, Boesby S, Wolff B, et al. Recombinant human erythropoietin and hemoglobin concentration at operation and during the

196. Catarci et al. Volume 44 • Number 1 • 2024
