Guidelines for PBM in obstetrics: what we have & what is on the horizon

Aryeh Shander, MD, FCCM, FCCP

Chief, Department of Anesthesiology, Critical Care and Hyperbaric Medicine.

Englewood Hospital and Medical Center, Englewood, New Jersey

Clinical Professor of Anesthesiology, Medicine and Surgery Icahn School of Medicine at Mount Sinai, New York

Disclosure

SPEAKERS BUREAU: CSL Behring, Masimo, Merck

CONSULTANT: AMAG Pharmaceuticals, Inc., CSL Behring, Gauss Surgical, Masimo Corporation, Vifor Pharma

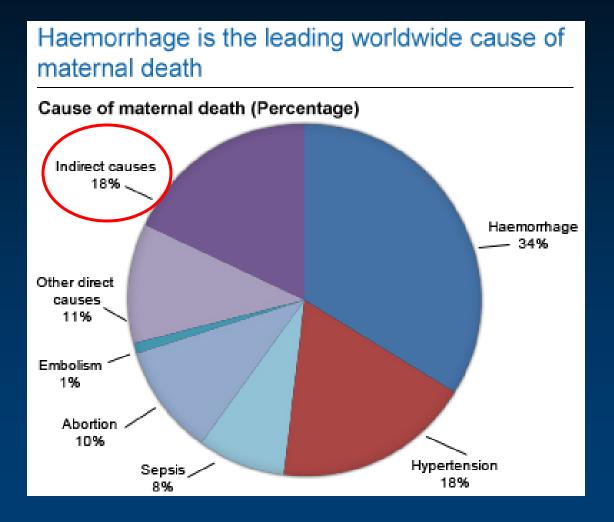
GRANT/RESEARCH: CSL Behring, Masimo, HbO2 Therapeutics, LLC

OVERVIEW

- What we have:
 - Current data on M&M
 - What do we know about prevention of maternal hemorrhage?
 - AWHON data and initiative
 - Assessing blood loss
 - Do we need MTP or MHP?
- What we need the future
 - Understanding the physiology of coagulopathy in maternal hemorrhage
 - Is it DIC or something else?
 - The holy grail antifibrinolytic therapy, does it work for all or just for some?

Anemia in Pregnancy – Facts and more

• Prevalence of anemia during pregnancy:


- 53%-61% for Africa
- 44%-53% for South-East Asia

- <u>17%-31% for Europe and North America</u>

- Iron and folate deficiency are the most common etiological factors
- 20% of pregnant women have hgb levels of <8 g/dL,
- Between 2% and 7% have a value of <7 g/dL
- ACOG estimated that 5% of women who give birth lose 1,000 mL of blood or more during delivery

Breymann C et al. Semin Hematol. 2015

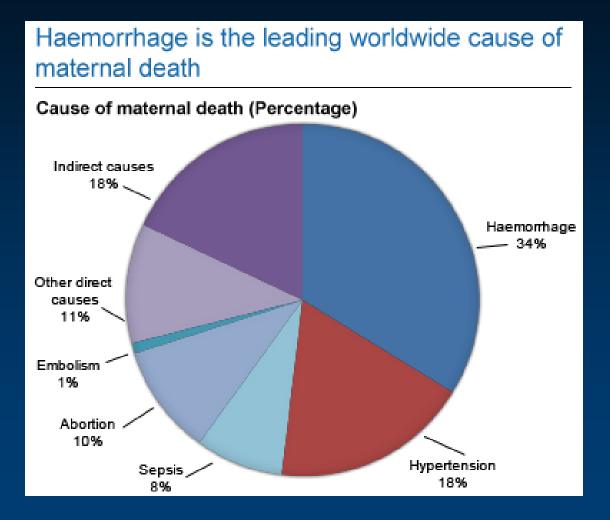
LEADING CAUSES OF MATERNAL MORTALITY

Source: WHO systemic review of causes of maternal death (preliminary data). 2010

Indirect causes of severe adverse maternal outcomes: a secondary analysis of the WHO Multicountry Survey on Maternal and Newborn Health

P Lumbiganon,^a M Laopaiboon,^b N Intarut,^b JP Vogel,^{c,d} JP Souza,^d AM Gülmezoglu,^d R Mori,^e on behalf of the WHO Multicountry Survey on Maternal and Newborn Health Research Network

- 359 health facilities in 29 countries (N = 314,623 pregnant women)
- 2822 /314,623 reported to suffer from severe maternal outcomes
- 20.9% (589/2822) were associated with indirect causes
- Most common indirect cause was anemia (50%)
- Women with underlying indirect causes showed significantly higher risk of obstetric complications, severe maternal outcomes and perinatal mortality



Maternal complications and perinatal mortality: findings of the World Health Organization Multicountry Survey on Maternal and Newborn Health

JP Vogel,^{a,b} JP Souza,^b R Mori,^c N Morisaki,^{c,d} P Lumbiganon,^e M Laopaiboon,^f E Ortiz-Panozo,^g B Hernandez,^h R Pérez-Cuevas,ⁱ M Roy,^j S Mittal,^{k,I} JG Cecatti,^m Ö Tunçalp,^b AM Gülmezoglu,^b on behalf of the WHO Multicountry Survey on Maternal and Newborn Health Research Network

- 359 participating facilities in 29 countries (N = 308,392 singleton deliveries)
- Maternal complications were present in 85.6, 86.5, and 88.6%% of macerated LFDs, fresh LFDs, and ENDs, respectively.
- Risks of all three perinatal mortality outcomes were significantly increased with:
 - Placental abruption, ruptured uterus, systemic infections/sepsis, preeclampsia, eclampsia, and severe anemia

LEADING CAUSES OF MATERNAL MORTALITY

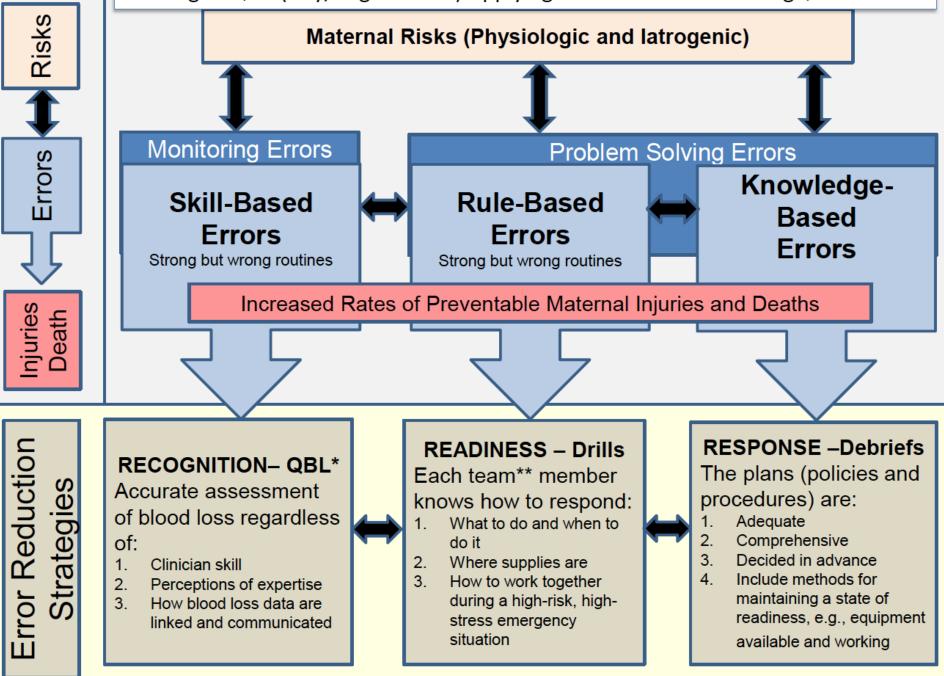
Source: WHO systemic review of causes of maternal death (preliminary data). 2010

Medical Advances in the Treatment of Postpartum Hemorrhage

Anne-Sophie Ducloy-Bouthors, MD,* Sophie Susen, MD, PhD,†‡ Cynthia A. Wong, MD,§ Alex Butwick, MBBS, FRCA, MS, Benoit Vallet, MD, PhD,* and Evelyn Lockhart, MD¶

- Monitoring and Rapid laboratory assessment of coagulopathy in the setting of PPH
- "Modern" approach to transfusion therapy
- Pro-hemostatic pharmacotherapy as an adjunct to transfusion

Clinical and pharmacological measures for PPH prevention


Prevention	WHO (2012)	FIC (20	RCOG (2011)	ACOG	SOGC	RANZCOG (2016)	CNGOF (2015)
Uterotonic	+	+	+	-	+	+	+
Controlled cord traction	+	+	+	-	+	+	-
Cord clamping	+	+	+	-	+	+	-
Uterine massage	-	+	-	-	-	-	-
Management of retained placenta in absence of bleeding	+	+.	-	-	+	-	+
Surveillance and reporting of blood loss and vital signs after delivery	-	+	-	-	-	-	+

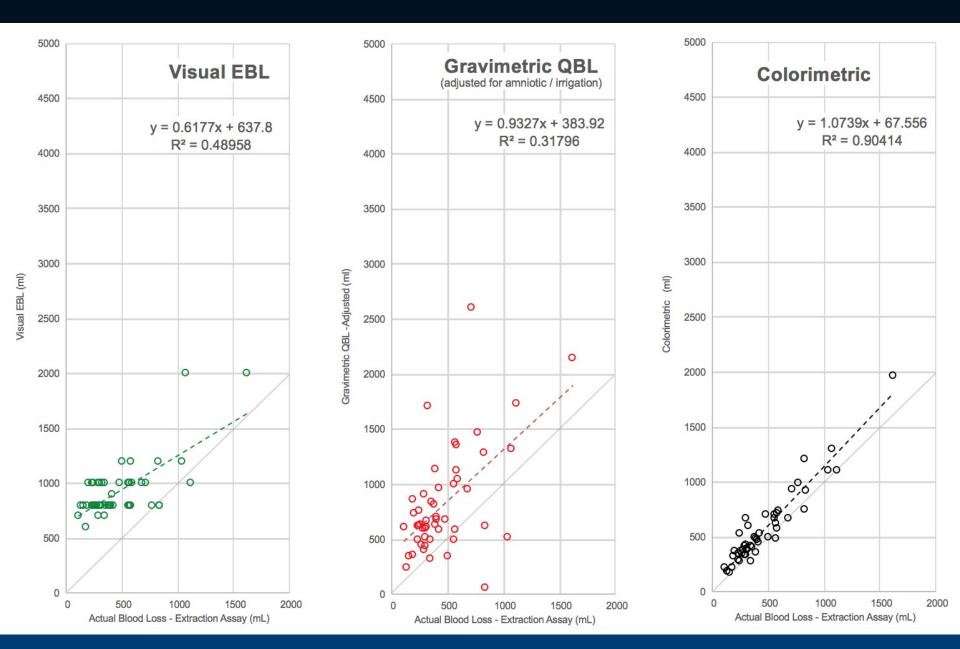
Sentilhes L et al Expert Rev Hematol. 2016

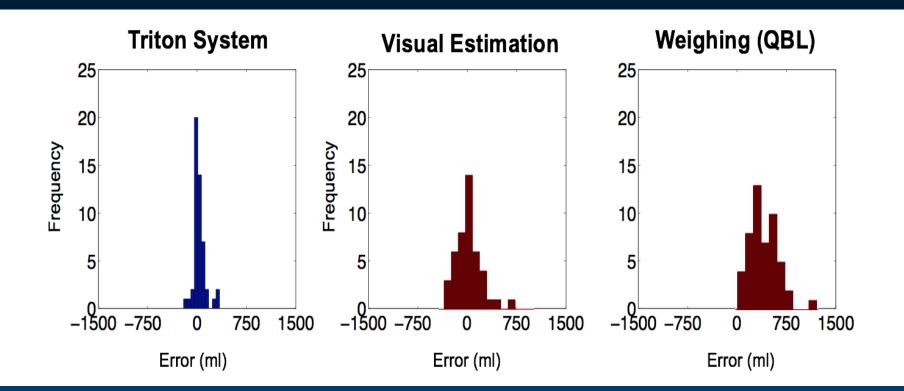
AWHONN PPH Project

- Ca, NJ, DC and GA
- 1999 Maternal mortality from PPH 9.9% (46th)
- 2010 Maternal mortality from PPH 16.8%
- 184% increase in blood transfusions
- Leading cause of maternal morbidity
- Project revolves around:
 - -Risk assessment -PBM
 - -'Right' blood products Transfusion Medicine
 - -Team work, simulation and "dry runs" PBM

Bingham, D. (July/August 2012) Applying GEMS to OB Hemorrhage, JOGNN.

Methods of Blood Loss Estimation


- Visual assessment


- - Plasma volume changes (radioactive tradioactive tradioactive)
- analisis) elements)
- Measurement of Cr-tagged erythrocytes

<u>Underestimation</u> of perioperative/ peripartum bleeding!!!

Assessing blood loss

C – Section, visual estimation and weighing sponges provide inaccurate results

G Konig et al. Anesth Analg 2014 Satish et al. Obstetrics & Gynecology 2014

Capturing blood loss in the OR

sponge

Captures blood loss on each sponge used during c-section

canister

Analyzes image to determine blood loss in suction canister

Protocols for massive bleeding Blood products transfusion RATIO in massive trauma PC : FFP: Plate - 1 : 1:1

- Some obstetric centers have adopted formulaic protocols for PPH on data derived from massive trauma.
- Or 1:1:1:1 PC:FFP:PLT:CRYO

Saule I et al. Int J Obstet Anesth. 2012

The **DISADVANTAGE** of unmonitored "shock packs" transfusion

- FFP is donated from non-pregnant population
 - Fibrinogen < 2g/L
 - Relative low Factor VIII and von Willebrand
- Do not distinguish between the underlying etiology of bleeding
 - Early empirical FFP transfusion useful for placental abruption and amniotic fluid embolism (consumption mechanism) and unnecessary for atonic bleeding or genital tract trauma
- The coagulopathy of MTP

The Use of Postpartum Hemorrhage Protocols in United States Academic Obstetric Anesthesia Units

Rachel M. Kacmar, MD,* Jill M. Mhyre, MD,† Barbara M. Scavone, MD,‡ Andrea J. Fuller, MD,§ and Paloma Toledo, MD, MPH*

- 58% response rate (60 from 104)
- 67% of all academic obstetric units had PPH protocols and <u>Massive Transfusion Protocol as a part of PPH protocol</u>

•<u>79% "Obstetric hemorrhage packs"</u> <u>PC:FFP:CRYO:PLT 6:4:5:6</u>

Anesth Analg. 2014

Limitations of the Ratio-Driven Concept for TIC

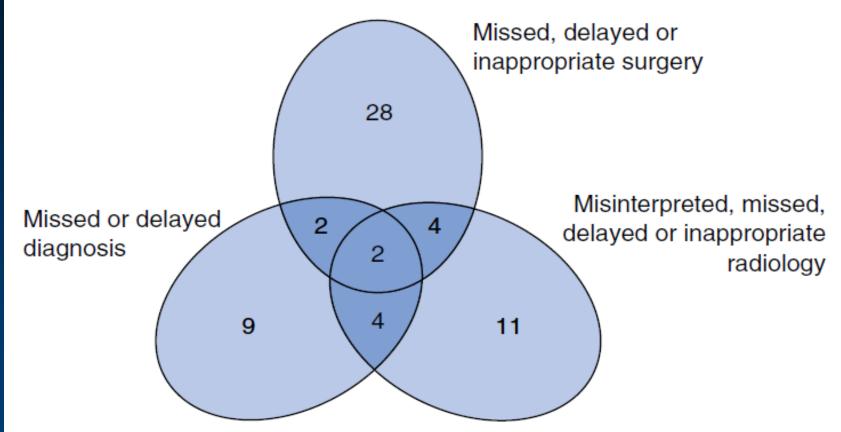
- Survivor Bias
 - Skews data in observational studies
- Timing of Intervention
 - Early intervention required to improve the hemostatic capacity of exsanguinating patients
- Potential Adverse Events
 - High-volume transfusions are associated with a risk of complications
- Platelet Administration
 - Role of platelet transfusion in the management of TIC is currently unclear

Schöchl A et al. Anesth Analg. 2013

Opportunities for improvement in the management of patients who die from haemorrhage after trauma

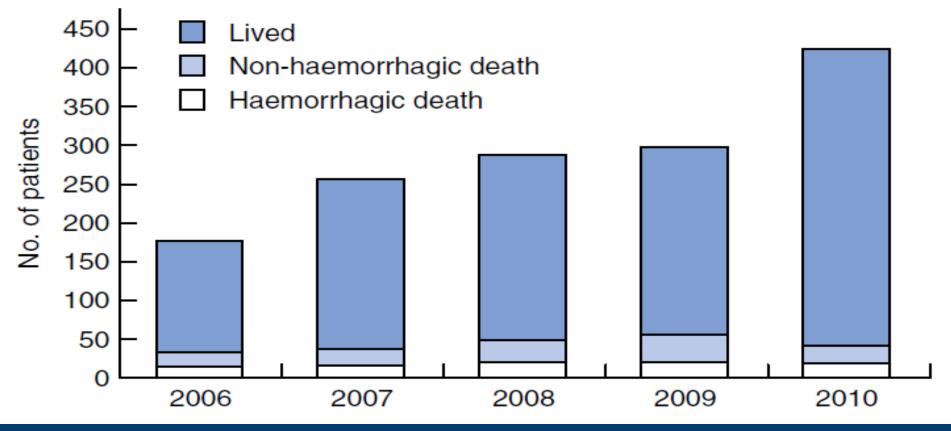
D. O'Reilly¹, K. Mahendran¹, A. West¹, P. Shirley², M. Walsh¹ and N. Tai¹

- N = 7511 trauma team activations; 423 patients died
- N = 112 Hemorrhage 2nd most common cause of death (Substantial contributor to death in 15 cases)
- N = 84 of these 127 patients, a total of 150 OPIs were identified
- OPIs frequently involved the <u>decision</u> between surgery, radiology and further investigation
- The mortality rate among shock patients fell significantly over the study interval (P < 0.026)
- Death from traumatic hemorrhage is associated with identifiable, remediable failures in care


OPI = opportunities for performance improvement

Br J Surg. 2013

BJS


100

Analysis of the interaction between active failures in diagnosis, radiology and surgery

Br J Surg. 2013

Survival and mortality from hemorrhage or other cause in patients presenting in shock, 2006–2010

Br J Surg. 2013

OVERVIEW

What we have:

- Current data on M&M
- What do we know about prevention of maternal hemorrhage?
- AWHON data and initiative
- Assessing blood loss
- Do we need MTP or MHP?
- What we need the future
 - Understanding the physiology of coagulopathy in maternal hemorrhage
 - Is it DIC or something else?
 - The holy grail antifibrinolytic therapy, does it work for all or just for some?

Changes in the hemostasis at term

- Prothrombotic (Hypercoagulable) state
- Levels of ALL procoagulant factors (except factor XI) increased
 - Fibrinogen and factor VIII 1 up to 100% (4-6g/L)
 - Von Willebrand factor 🔶 up to 300%
 - Shorter PT/aPTT
 - D-dimer level increase
 - Increase in viscoelastic parameters
- Natural anticoagulants (protein C and S) fall
 - Increase in fibrinolysis
- Gestational thrombocytopenia

Allard S et al.Br J Haematol. 2014 Thachil J et al. Blood Rev. 2009 O'Riordan MN et al. Best Pract Res Clin Obstet Gynaecol. 2003 Liu XH et al. Int J Gynaecol Obstet. 2009 Szecsi PB et al. Thromb Haemost. 2010

Is it a Hypercoagulable state of pregnant patients is a risk factor for embolic event ?

- Recombinant activated factor VII was used in three patients with massive obstetric hemorrhage due to
 - placenta previa accreta
 - rupture of the uterus and
 - -pre-eclampsia with HELLP
- rFVII decreased the bleeding and enabled control of the hemorrhage
- rFVIIa seems to be an adjunctive hemostatic measure for the treatment of severe obstetric hemorrhage.

Disseminated Intravascular Coagulation Syndromes in Obstetrics

- DIC common contributor to maternal morbidity and mortality and is associated with up to 25% of maternal deaths
- The etiopathogenesis of DIC is complex and currently thought to be initiated by tissue factor or thromboplastin
- Tissue factor activates the coagulation sequence to cause fibrin clotting and its dissolution by the fibrinolysin system
- Common disorders associated with DIC include:
 - Severe preeclampsia, hemolysis, elevated liver enzymes, and low platelet count syndrome, and massive obstetric hemorrhage

Cunningham FG et al. Obstet Gynecol. 2015

DIC treatment in obstetrics

- Treatment of DIC is centered on two principles:
- The first is identification and treatment of the underlying disorder
 - Many women with consumptive coagulopathy also have massive hemorrhage
- The second tenet of treatment is that obstetric complications such as uterine atony or lacerations must be controlled simultaneously with prompt blood and component replacement for a salutary outcome

Rules of treating coagulopathy

- Recognize that it is coming and try to prevent it
- Recognize the major mechanism of the developing coagulopathy and concentrate efforts on its treatment
- Recognize the general pace of the development of coagulopathy in normal patients
- Establish treatment goals for the administration of blood products
- In patients with established coagulopathy:
 - a steady hand on the blood product spigot can be expected to reduce both blood product waste and patient bleeding

Armand R et al. Transfus Med Rev. 2003

Monitoring (Laboratory diagnosis)

- "Classical" laboratory-based method
 - PT/aPTT; Fibrinogen; PLT; Hgb
- "Modern" Point-of-care testing
 - -Tromboelastography (TEG)
 - -Tromboelastometry (ROTEM)
- Clinical observation with empirical blood product replacement

PT/aPTT

 During PPH PT/aPTT remain normal despite large amounts of bleeding

–In a cohort of 456 women with PPH, most had normal PT/aPTT until blood loss reached 5000mL.

de Lloyd L et al. Int J Obstet Anesth. 2011

Fibrinogen is an important predictor of severe PPH

- Fibrinogen concentration < 2g/L compared with fibrinogen concentration >3g/L was
 - Predictive of severe PPH with pos.pred.value of 100%
 - Specificity of severe PPH was 99.3%

Cortet M et al. Br J Anaesth. 2012 Gayat E et al. Intensive Care Med. 2011

Fibrinogen levels in non-pregnant women and in pregnant women during the 1st, 2nd & 3rd trimester

	Non- pregnant controls	1 st trimester	2 nd trimester	3 rd trimester			
	Fibrinogen concentration (g/l)						
Huissoud et al	3.3 [3.1–4.6]	4.0 [3.7–4.3]	4.6 [4.3–4.8]	5 [4.4–5.8]			
Adler et al	2.2 (0.4)	NA	NA	3.79 (0.78)			
Uchikova et al	2.6 (0.6)	NA	NA	4.7 (0.7)			
Cerneca et al	3.7 (0.8)	4.1 (0.7)	4.6 (0.8)	5.6 (1.1)			
Oliver et al	NA	2.6 (0.3)	3.0 (0.2)	3.5 (0.2)			
Manten et al	NA	3.5 (NA)	3.79 (NA)	5.1 (NA)			
Choi et al	3.3 (0.5)	3.3 (0.5)	3.8 (0.5)	4.4 (0.5)			
	2.2 – 3.7	2.6 – 4.1	3.0 – 4.6	3.5 – 5.6			

Butwick AJ et al Curr Opin Anaesthesiol. 2015

Major obstetric haemorrhage: monitoring with thromboelastography, laboratory analyses or both?

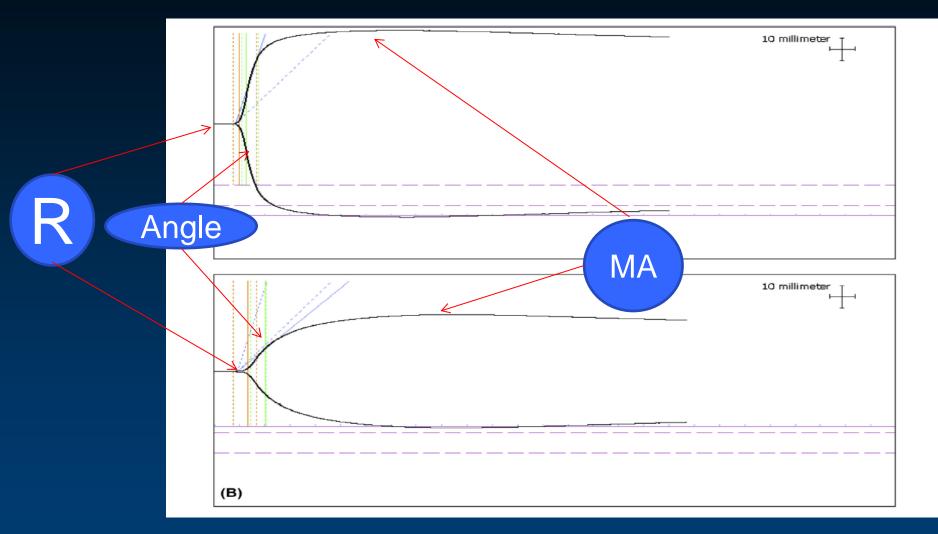

O. Karlsson,^a A. Jeppsson,^b M. Hellgren^c

Table 3 Thromboelastography variables Controls MOH all MOH 2-3LMOH > 3L(n = 49)(n = 10)(n = 45)(n = 35)R (min) 5.1^{T} (4.5 to 5.7) 5.2 (4.5 to 5.9) 4.5 (3.2 to 5.9) 6.3 (5.8 to 6.9) [1.8–13.4] [1.3–9.6] [1.6-9.6] [1.3-6.7]K (min) 1.8 (1.6 to 2.1) 2.0 (1.8 to 2.2) 2.0 (1.8 to 2.2) 2.1 (1.6 to 2.6) [1.0-5.3] [1.2 - 3.7][1.3 - 3.3][1.2 - 3.7]61.3^{*} (58.7 to 63.8) 65.2 (62.7 to 67.6) 61.4 (58.4 to 64.3) 60.8 (55.0 to 66.7) Angle (degree) [38.6–77.1] [42.1 - 72.1][42.1–72.1] [48.5–71.8] 64.8^{2} (62.4 to 67.3) 65.1 (62.2 to 68.1) MA (mm) 72.9 (71.4 to 74.4) 63.8 (59.7 to 67.9) [54.2-81.6] [38.0–79.4] [38.0-79.4] [55.4–74.6] 1.5 (0.9 to 2.2) 0.4^{\dagger} (0.1 to 0.7) LY30 (%) 0.4 (0.1 to 0.8) 0.2 (-0.06 to 0.4)[0-9.3][0-5.9] [0-5.9][0-0.9]

Data are mean, (95% CI) and [range]. R: time to start of clotting; K: time to 20 min clot firmness; Angle: clot growth rate; MA: maximum clot amplitude; LY30: lysis 30 min after maximum amplitude.^{*} P < 0.05; [†] P < 0.01; ^{Σ} P < 0.0001 compared to controls.

Int J Obstet Anesth. 2014

Two TEG profiles

Turnaround time PT/aPTT - TEG from 35+37min to 14+3 min

Int J Obstet Anesth. 2014

Tranexamic acid

- Antifibrinolytic agents strengthen fibrin clots by inhibiting enzymatic fibrinolysis.
- Blocks the degradation of fibrin clots by plasmin.
- Have moderate but significant effect on blood loss.
- Without significant adverse effects.

20000 adult trauma patient CRASH-2 trail

The addition of TA (1g) is cheap, likely to be useful and appears safe. (Mercier FJ et al. Curr Opin Anaesthesiol. 2010) <u>The CRASH 2 trial for trauma patients</u> Early administration of TXA safely reduced the risk of death in bleeding trauma patients.

Trauma patient *≠* Obstetric patient

The WOMAN Trial: TA for the treatment of PPH: an international randomized, double blind placebo controlled trial. <u>20,000 women</u>

> WHO and ESA guidelines recommend 1gm TA for > 1L Bleeding or for suspected massive bleeding

PBM Recommendations in National and International Obstetric Societies' PPH Guidelines

	ACOG	SOGC	RCOG	RAN OG	ZC	D-A- CH	IEP	NPM S	CNGO F
Transfusion Indications	+	-	+	+		+	+	-	+
RBC	+	-	+	+		-	-	+	+
Plasma	-	-	+	+		+	-	+	+
PLTs	-	-	+	+		+	-	-	+
MTP	-	-	-	+		-	+	+	-
Fibrinogen replacement	-	-	+	+		-	+	+	+.
Pharmacological agents	-	-	-	+		+	+	-	+
RVIIa	-	-	+	+		+	+	-	-
Cell salvage	+	-	+	+		-	-	-	-
Other PBM strategies	+	-	+	+		+	+	+	+

Shaylor R et al Anesth Analg. 2016

Summary

- Rate of Post Partum Hemorrhage (PPH) increasing
- Massive PPH = Massive trauma-associated hemorrhage
- EBL the need for better objective measures
- Lab monitoring (Fibrinogen; Viscoelastic)
- Institutional protocol for PPH MTP is not enough!
- Blood components use clinical judgment goal directed
- Identify PPH and act early and quickly!!!
- Team Approach !!! PBM can lead the way

THANK YOU