From donor biology to donor health protection: Three (very) short stories

Steven L. Spitalnik, M.D.

Laboratory of Transfusion Biology

NewYork-Presbyterian

The University Hospitals of Columbia and Cornell

Columbia University

College of Physicians and Surgeons

Potential Conflicts of Interest

Hemanext:

Tioma, Inc:

Advisory Board

Consultant

This is the focus of our interest

This is the focus of our interest

Are there characteristics of the donor that will "make better products" and affect donor health?

As storage time increases (FDA criteria):

As storage time increases (FDA criteria):

Increasing hemolysis *ex vivo* (<1.0%) Infuse free hemoglobin, etc.

As storage time increases (FDA criteria):

Increasing hemolysis *ex vivo* (<1.0%) Infuse free hemoglobin, etc.

Decreasing 24-hr post-transfusion recovery *in vivo* (~>75%) Less than optimal dose

What happens to the RBCs during refrigerated storage?

Day 0

Blasi, D'Alessandro, et al. Transfusion Medicine 22:90-96, 2012

Day 0

Day 42

Blasi, D'Alessandro, et al. Transfusion Medicine 22:90-96, 2012

- ✤ Nitric oxide
- ▲ Protein oxidation
- ↑ Membrane- & cytoskeletal-associated hemoglobin
- ↑ Membrane lipid peroxidation
- ▲ Lysophosphatidylcholine species
- ↑ Vesiculation and membrane loss
- ✤ Deformability
- ↑ Phosphatidylserine exposure

- ✤ Nitric oxide
- ▲ Protein oxidation
- ↑ Membrane- & cytoskeletal-associated hemoglobin
- ↑ Membrane lipid peroxidation
- ▲ Lysophosphatidylcholine species
- Vesiculation and membrane loss
- Deformability
- Phosphatidylserine exposure

The "RBC storage lesion" Final common pathway?

- Metabolic dysfunction & oxidative stress \rightarrow
- ✤ Deformability
- "Eat me" signals (phosphatidylserine)
- - ↑ Hemolysis in vitro
 - ↑ RBC clearance in vivo

Intravascular and extravascular hemolysis

RBC Clearance Variability

RBC Recovery Study

Dumont et al. Transfusion 48:1053-60, 2008.

Dumont et al. Transfusion 48:1053-60, 2008.

Dumont et al. Transfusion 48:1053-60, 2008.

Dumont et al. Transfusion 48:1053-60, 2008.

Infection? Inflammation? Thrombosis? Mortality?

Infection? Inflammation? Thrombosis? Mortality?

Not going to talk about these now

Infection? Inflammation? Thrombosis? Mortality?

Not going to talk about these now We can discuss these later, if you would like

RBC refrigerated storage time ↑ RBC storage lesion in vitro **RBC** recovery *in vivo*

Why is transfusion of less than a full "dose" OK?

Why is transfusion of less than a full "dose" OK?

Transfused RBCs that don't circulate cannot deliver O₂

When do RBCs "go bad"?

When do RBCs "go bad"?

The Journal of Clinical Investigation

CLINICAL MEDICINE

Prolonged red cell storage before transfusion increases extravascular hemolysis

Francesca Rapido,^{1,2} Gary M. Brittenham,^{3,4} Sheila Bandyopadhyay,¹ Francesca La Carpia,¹ Camilla L'Acqua,¹ Donald J. McMahon,⁴ Abdelhadi Rebbaa,¹ Boguslaw S. Wojczyk,¹ Jane Netterwald,¹ Hangli Wang,¹ Joseph Schwartz,¹ Andrew Eisenberger,⁴ Mark Soffing,⁵ Randy Yeh,⁵ Chaitanya Divgi,⁵ Yelena Z. Ginzburg,⁶ Beth H. Shaz,⁶ Sujit Sheth,⁷ Richard O. Francis,¹ Steven L. Spitalnik,¹ and Eldad A. Hod¹

Journal of Clinical Investigation 127:375-382, 2017

60 healthy volunteers enrolled

52 completed study

Randomized to 1, 2, 3, 4, 5, 6 weeks of storage

Leukoreduced; AS-3

Transfused entire unit

⁵¹Cr-labeled post-transfusion recovery

When do RBCs "go bad"?

When do RBCs "go bad"? 6 Weeks

When do RBCs "go bad"? 6 Weeks

Similar pattern with serum iron, NTBI, etc.

When do RBCs "go bad"? 6 Weeks

Similar pattern with serum iron, NTBI, etc. No evidence of intravascular hemolysis

When do RBCs "go bad"?

When do RBCs "go bad"?

When do RBCs "go bad"?

When do RBCs "go bad"?

What donor characteristics influence variation in post-transfusion recovery?

Story #1:

Genetics: G6PD deficiency

Richard O. Francis, M.D., Ph.D.

The "RBC storage lesion" Final common pathway?

Metabolic dysfunction & oxidative stress \rightarrow

- ✤ Deformability
- ↑ "Eat me" signals
- ✤ "Don't eat me" signals
 - ↑ Hemolysis *in vitro*
 - ↑ RBC clearance in vivo

Intravascular and extravascular hemolysis

Inherited Hemolytic Anemias Final common pathway

Metabolic dysfunction & oxidative stress \rightarrow

- ✤ Deformability
- ↑ "Eat me" signals
- ✤ "Don't eat me" signals
 - ↑ Hemolysis in vitro
 - ↑ RBC clearance in vivo

Intravascular and extravascular hemolysis

What are the consequences of the clearance of stored RBCs?

RBC storage lesion *in vitro*

Decreased RBC recovery in vivo

What are the consequences of the clearance of stored RBCs?

Insufficient protection against oxidative stress in vitro

Decreased RBC recovery in vivo

The case for G6PD: Homeostasis

Unrelieved oxidative stress:

RBC structural damage \rightarrow

Intravascular hemolysis (hemoglobinemia)

Extravascular hemolysis (Bilirubin, serum iron)

Most common human enzymopathy

Most common human enzymopathy

~400 million affected individuals

Most common human enzymopathy

~400 million affected individuals

Genetically-induced enzyme variation: Severely decreased activity Normal activity Increased activity

Most common human enzymopathy

~400 million affected individuals

Genetically-induced enzyme variation: Severely decreased activity: poor storers? Normal activity Increased activity

Most common human enzymopathy

~400 million affected individuals

Genetically-induced enzyme variation: Severely decreased activity: poor storers? Normal activity Increased activity: super storers?

Prevalence of G6PD-deficiency in normal donors at our hospital:

Random donors: 0.3%

Francis et al. Transfusion 53:606-611, 2013

Prevalence of G6PD-deficiency in normal donors at our hospital:

Random donors:0.3% R_0R_0/R_0r donors:12.3%

Prevalence of G6PD-deficiency in normal donors at our hospital:

Random donors:0.3% R_0R_0/R_0r donors:12.3%

Exchange Transfusions for Sickle Cell Disease

Francis et al. Transfusion 53:606-611, 2013

Study Design

Volunteers: G6PD-deficient Matched controls

Donate 1 unit: Pre-storage leukoreduced Store for 40-42 days in AS-3

24h 51-Cr post-transfusion recovery

Study Design

Enroll: 10 G6PD-deficient + 30 controls

G6PD-deficient variants: 9 African, 1 Mediterranean

None with hemoglobin variant or thalassemia trait

Conclusions (G6PD)

- RBCs from G6PD-deficient volunteers have inferior storage quality: **↓**5.8% (p=0.001)
- The intrinsic ability of RBCs to resist oxidative stress affects storage quality
- Should we test donors to provide better products?
- Should we counsel G6PD-deficient donors?

Guidelines on Assessing Donor Suitability for Blood Donation

Recommendations

Policies for the assessment of prospective donors should be developed by BTS in regions where there is a high incidence of enzymopathies and inherited red cell membrane defects

Accept

Individuals with G6PD deficiency or other inherited red cell membrane defects, without a history of haemolysis; however, their blood is not suitable for intrauterine transfusion, neonatal exchange transfusion or for patients with G6PD deficiency

Defer permanently

 Individuals with G6PD deficiency or inherited red cell membrane defects, with a history of haemolysis

Recommendations

Policies for the assessment of prospective donors should be developed by BTS in regions where there is a high incidence of enzymopathies and inherited red cell membrane defects

Accept

Individuals with G6PD deficiency or other inherited red cell membrane defects, without a history of haemolysis; however, their blood is not suitable for intrauterine transfusion, neonatal exchange transfusion or for patients with G6PD deficiency

Defer permanently

 Individuals with G6PD deficiency or inherited red cell membrane defects, with a history of haemolysis

Should we counsel G6PD-deficient donors regarding their condition?

Story #2:

Diet: Iron deficiency

Eldad Hod, M.D.

Gary Brittenham, M.D.

The "RBC storage lesion" Final common pathway?

Metabolic dysfunction & oxidative stress \rightarrow

- ✤ Deformability
- ↑ "Eat me" signals
- ✤ "Don't eat me" signals
 - ↑ Hemolysis *in vitro*
 - ↑ RBC clearance in vivo

Intravascular and extravascular hemolysis

Iron deficiency (without anemia) is very common in blood donors

Iron deficiency (without anemia) is very common in blood donors

Iron-deficient erythropoiesis (IDE)

Iron deficiency anemia affects RBC lifespan & transfusion recovery

Resistance to oxidative stress

Oxidative damage

Resistance to low pH

Phosphatidylserine exposure

Deformability

Splenic clearance

Iron deficiency anemia affects RBC lifespan & transfusion recovery

Resistance to oxidative stress

Oxidative damage

Resistance to low pH

Phosphatidylserine exposure

Deformability

Splenic clearance

Is this relevant in IDE?

Mouse model

Weanling, male C57BL/6 mice:

- 1. Control diet: 45 ppm of iron
- 2. Iron-deficient diet: 0-4 ppm of iron
- 3. Iron-deficient diet + weekly phlebotomy

(normal) (IDE) (IDA)

Mouse model

(normal)

(IDE)

(IDA)

Weanling, male C57BL/6 mice:

- 1. Control diet: 45 ppm of iron
- 2. Iron-deficient diet: 0-4 ppm of iron
- 3. Iron-deficient diet + weekly phlebotomy

At 10 weeks of age:

Exsanguinated, pooled, leukoreduced, packed, stored in CPDA-1 for 12 days

Transfused into GFP-transgenic recipients

24-hour post-transfusion recovery by flow cytometry

Results

All comparisons: p<0.001

RBCs from normal donors had normal recovery

RBCs from donors with IDA had poor recovery

RBCs from donors with IDE had sub-normal recovery

ClinicalTrials.gov	Search for studies:		Search
Try our beta test site		Advanced Search	Help Studies by Topic Glossary
IMPORTANT: Listing of a study on this site does not reflect endorsement by the National Institutes of Health. Talk with a trusted healthcare professional before volunteering for a study. Read more			
Find Studies - About Clinical Studies - Submit S	tudies - Resources - About This Site -		
Home > Find Studies > Search Results > Study Record Detail Text Size 🔻			
Trial record 3 of 5 for: eldad hod			
◄ Previous Study Return to List Next Study ►			
Donor Iron Deficiency Study - Red Blood Cells From Iron-deficient Donors: Recovery and Storage Quality (DIDS)			
This study is enrolling participants by invitation only.	ClinicalTrials.gov Identifier: NCT02889133		
Sponsor: Columbia University	First received: August 25, 2016		
Columbia Oniversity	Last updated: March 20, 2017		
Collaborators: New York Blood Center	Last verified: March 2017		
National Heart, Lung, and Blood Institute (NHLBI)	History of Changes		
Information provided by (Responsible Party): Eldad Arie Hod, Columbia University			
Full Text View Tabular View No Study Results	Posted Disclaimer Pow to Read a Study Record		

Conclusions (Iron)

Should we screen donors for iron-deficient erythropoiesis?

Should we collect & transfuse RBCs from such donors?

Should we counsel & treat iron-deficient donors?

Story #3:

"Environment": Lead

Tiffany Thomas, Ph.D.

Neurotoxicant (synapses, myelin, etc.)

Neurotoxicant (synapses, myelin, etc.)

No threshold effect

Neurotoxicant (synapses, myelin, etc.)

No threshold effect

Young children particularly vulnerable

Neurotoxicant (synapses, myelin, etc.)

No threshold effect

Young children particularly vulnerable

Premature babies are relatively Fe deficient

Neurotoxicant (synapses, myelin, etc.)

No threshold effect

Young children particularly vulnerable

Premature babies are relatively Fe deficient

hood lead level: >5 μg/dL (0.2415 μmol/L)

Neurotoxicant (synapses, myelin, etc.)

No threshold effect

Young children particularly vulnerable

Premature babies are relatively Fe deficient

hood lead level: >5 μg/dL (0.2415 μmol/L)

In whole blood, 75% of lead is in RBCs

Do donor pRBC units contain high lead levels?

Do donor pRBC units contain high lead levels?

If so, who cares?

BLOOD DONORS AND BLOOD COLLECTION

A population-based study on blood lead levels in blood donors

Gilles Delage,¹ Suzanne Gingras,² and Marc Rhainds^{2,3}

TRANSFUSION 2015;55;2633-2640

BLOOD DONORS AND BLOOD COLLECTION

A population-based study on blood lead levels in blood donors

Gilles Delage,¹ Suzanne Gingras,² and Marc Rhainds^{2,3}

TRANSFUSION 2015;55;2633-2640

"Toxic" levels in ~10% of their donor population

Lead exposure in preterm infants receiving red blood cell transfusions

Hijab Zubairi¹, Paul Visintainer^{2,3}, Jennie Fleming¹, Matthew Richardson^{1,3} and Rachana Singh^{1,3}

Pediatric RESEARCH

Volume 77 | Number 6 | June 2015

Lead

Our data

Our data

Conclusions: Lead

Should we screen units destined for premature infants?

Should we inform donors of their lead "toxicity"?

Optimal post-transfusion recovery & lifespan "Equivalent to fresh"

Optimal post-transfusion recovery & lifespan "Equivalent to fresh"

No WBCs Avoid febrile NHTRs, HLA alloimmunization, TA-GVHD

Optimal post-transfusion recovery & lifespan "Equivalent to fresh"

No WBCs Avoid febrile NHTRs, HLA alloimmunization, TA-GVHD

No plasma Avoid allergic NHTRs, anaphylactic NHTRs, and TRALI

Optimal post-transfusion recovery & lifespan "Equivalent to fresh"

No WBCs Avoid febrile NHTRs, HLA alloimmunization, TA-GVHD

No plasma Avoid allergic NHTRs, anaphylactic NHTRs, and TRALI

Lacking clinically-significant RBC blood group antigens Avoid RBC alloimmunization and HTRs

Future Directions

But, should we "create" better donors?

Future Directions

But, should we "create" better donors?

If so, what ethical obligations do we have to protect and inform our donors?

Thank you